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分析學

 Uwni 煢鴉  uwni@example.com

夫分析學者、數學之基也．然則其理實纏綿、非一言所能盡也．

1

https://uwni.blog/posts/analysis/index.html
https://uwni.blog/posts/analysis/index.html
https://uwni.blog/posts/analysis/index.html?t=t8sy4o
mailto:uwni@example.com
mailto:uwni@example.com
mailto:uwni@example.com


U
w
n
i 
煢
鴉

 纂
於

 2
0
2
6
/
0
1
/
1
3
 1

2
:1

7
:1

2
 時
．
本
文

網
枼
．

1 論數列

1.1 數列

命題 1 有序列 {𝑎𝑛} 單調遞減而 {𝑏𝑛} 單調遞增者、且 𝑎𝑛 ≥ 𝑏𝑛． ∀𝑖, 𝑗 ∈ 𝗡, 𝑎𝑖 ≥ 𝑏𝑗 

意即、𝑎𝑛 皆 𝑏𝑛 之上界、𝑏𝑛 皆 𝑎𝑛 之下界也．

證 . 設 𝑖, 𝑗 ∈ ℕ、不失泛性、分三種情況討論：

(1) 𝑖 = 𝑗： 由題設知 𝑎𝑖 ≥ 𝑏𝑖、故 𝑎𝑖 ≥ 𝑏𝑗．

(2) 𝑖 < 𝑗： 因 {𝑎𝑛} 單調遞減、故 𝑎𝑖 ≥ 𝑎𝑗． 因 {𝑏𝑛} 單調遞增、故 𝑏𝑗 ≥ 𝑏𝑖． 由題設 𝑎𝑗 ≥
𝑏𝑗、結合上述不䓁式： 𝑎𝑖 ≥ 𝑎𝑗 ≥ 𝑏𝑗

(3) 𝑖 > 𝑗： 因 {𝑎𝑛} 單調遞減、故 𝑎𝑗 ≥ 𝑎𝑖． 因 {𝑏𝑛} 單調遞增、故 𝑏𝑖 ≥ 𝑏𝑗． 由題設 𝑎𝑖 ≥
𝑏𝑖、結合上述不䓁式： 𝑎𝑖 ≥ 𝑏𝑖 ≥ 𝑏𝑗

綜上所述、∀𝑖, 𝑗 ∈ ℕ、恆有 𝑎𝑖 ≥ 𝑏𝑗．

因此、任意 𝑎𝑖 皆爲序列 {𝑏𝑛} 之上界、任意 𝑏𝑗 皆爲序列 {𝑎𝑛} 之下界． ∎

1.2 數列單調收斂之定理

凡單調遞增數列之有上界者與單調遞減數列之有下界者、皆收斂．請證明之．

1.3 極限

若夫極限者、古希臘之先賢始用之．自古及 Weierstrass
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圖 1 Karl Weierstrass, 1815-1897

之議、歷久而鮮能盡其理實也．微分與無窮小之辯、相爭其存廢逾千載猶未能決．其或爲 

0、或幾及 0 而非 0．時 0 而時亦非 0、George Berkeley 之屬者甚異之．物理學家屢以無窮

小正定所求不爽、故不以爲謬也．數學之理也、必明必晰．然則應先辯明所謂極限者、後

可以確然治分析無慮也．

定義 1（極限）稱數列 {𝑎𝑛} 之極限曰

lim
𝑛→∞

𝑎𝑛 = 𝐿

⇔ (∀𝜀 > 0)(∃𝑁 ∈ 𝗡∗)(∀𝑛 > 𝑁)|𝑎𝑛 − 𝐿| < 𝜀

極限者近而不逮、傍而未屆也．𝑎𝑛 之值將屆於 𝐿 、抑不之至．不得知也．若以 𝜀 − 𝑁  定

義議之．恣取正數 𝜀、不論大小、必存一處 𝑁、凡 𝑛 之後於 𝑁  者、𝑎𝑛 與 𝐿 相距幾微．何

以知其然也? 蓋其相距小於 𝜀 者也．凡正數者、皆見小於 𝑎𝑛 與 𝐿 之相距、此所以度量其

近也．豈非因 𝑛 之漸長而 𝑎𝑛 幾及於 𝐿 耶？！此所謂也、初立論時、不納者眾、至于今世、

莫不是之！

1.3.1 單調有界性之定理

數列之收斂者、其極限必存焉．以單調有界性之定理得知其收斂而不得知其極限也．欲察

極限幾何、猶須探其值而後驗以定義也．幸有各術如下以索數列之極限、一曰夾逼定理、二

曰四則運算、三曰 Stolz-Cesàro 定理也．
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1.3.2 夾逼定理

夾逼定理者、求極限之要術也．設有數列 {𝑎𝑛}、{𝑏𝑛}、{𝑐𝑛}、自某項起恆有 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛、

且 lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑐𝑛 = 𝐿、則必有 lim𝑛→∞ 𝑏𝑛 = 𝐿 也．

命題 2（夾逼定理）設數列 {𝑎𝑛}、{𝑏𝑛}、{𝑐𝑛} 滿足

(∃𝑁 ∈ 𝗡∗)(∀𝑛 > 𝑁)𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛

若 lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑐𝑛 = 𝐿、則 lim𝑛→∞ 𝑏𝑛 = 𝐿．

證 . 以極限定義證之．設 ∀𝜀 > 0、因 lim𝑛→∞ 𝑎𝑛 = 𝐿、故

(∃𝑁1 ∈ 𝗡∗)(∀𝑛 > 𝑁1)|𝑎𝑛 − 𝐿| < 𝜀

即 𝐿 − 𝜀 < 𝑎𝑛 < 𝐿 + 𝜀．同理、因 lim𝑛→∞ 𝑐𝑛 = 𝐿、故

(∃𝑁2 ∈ 𝗡∗)(∀𝑛 > 𝑁2)|𝑐𝑛 − 𝐿| < 𝜀

即 𝐿 − 𝜀 < 𝑐𝑛 < 𝐿 + 𝜀．

取 𝑁0 = max{𝑁, 𝑁1, 𝑁2}、則當 𝑛 > 𝑁0 時有

𝐿 − 𝜀 < 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛 < 𝐿 + 𝜀

故 |𝑏𝑛 − 𝐿| < 𝜀、即 lim𝑛→∞ 𝑏𝑛 = 𝐿． ∎

若數列 {𝑏𝑛} 之極限難可詳悉、但得覓取上下夾逼之數列 {𝑎𝑛} 與 {𝑐𝑛}、則可藉求 {𝑎𝑛} 與 

{𝑐𝑛} 之極限而得 {𝑏𝑛} 之極限也．

例以議之．

例 1

請證

lim
𝑛→∞

sin 𝑛
𝑛

= 0

蓋 |sin 𝑛| ≤ 1、故

−1
𝑛

≤ sin 𝑛
𝑛

≤ 1
𝑛

而 lim𝑛→∞ 1/𝑛 = lim𝑛→∞(−1/𝑛) = 0、由夾逼定理知 lim𝑛→∞ (sin 𝑛)/𝑛 = 0 也．

夾逼定理不獨用於數列、亦可推廣於函數極限．設函數 𝑓(𝑥)、𝑔(𝑥)、ℎ(𝑥) 於點 𝑥0 之某鄰

域內（或去心鄰域內）滿足 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥)、且 lim𝑥→𝑥0
𝑓(𝑥) = lim𝑥→𝑥0

ℎ(𝑥) = 𝐿、則 

lim𝑥→𝑥0
𝑔(𝑥) = 𝐿 也．

1.3.3 極限之代數運算

極限之加減乘除是也．設以 lim𝑛→∞ 𝑎𝑛 = 𝐿、lim𝑛→∞ 𝑏𝑛 = 𝑀、由定義知 ∀𝜀 > 0
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(∃𝑁𝑎 ∈ 𝗡∗)(∀𝑛 > 𝑁𝑎)|𝑎𝑛 − 𝐿| < 𝜀

∧ (∃𝑁𝑏 ∈ 𝗡∗)(∀𝑛 > 𝑁𝑏)|𝑏𝑛 − 𝑀| < 𝜀

故而 |−𝑎𝑛 − (−𝐿)| = |𝑎𝑛 − 𝐿| < 𝜀、是以

lim
𝑛→∞

(−𝑎𝑛) = −𝐿

也．設 𝑁 ≔ max{𝑁𝑎, 𝑁𝑏}、以三角不等式

|𝑎𝑛 + 𝑏𝑛 − (𝐿 + 𝑀)| ≤ |𝑎𝑛 − 𝐿| + |𝑏𝑛 − 𝑀| < 2𝜀

故而

lim
𝑛→∞

(𝑎𝑛 + 𝑏𝑛) = 𝐿 + 𝑀

並由式 1 可知 lim𝑛→∞(𝑎𝑛 − 𝑏𝑛) = 𝐿 − 𝑀  也．

此所以極限之代數運算效也．

|𝑎𝑛𝑏𝑛 − 𝐿𝑀|
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2 論級數

2.1 級數論

級數者、數列之累和也．累數列 {𝑎𝑛} 前 𝑛 項之和、名曰 𝑠𝑛 = ∑𝑛
𝑘=0 𝑎𝑘．則記

∑
∞

𝑛=0
𝑎𝑛 ≔ lim

𝑛→∞
𝑠𝑛

爲無窮級數、畧作級數．其中凡 𝑎𝑛 > 0 者、謂之正項級數．若 𝑠𝑛 收斂即曰級數收斂．𝑠𝑛 

發散即謂之級數發散．

命題 3 凡級數 ∑∞
𝑛=0 𝑎𝑛 之收斂者

lim
𝑛→∞

𝑎𝑛 = 0

證 . 不妨設 ∑∞
𝑛=0 𝑎𝑛 = 𝐿、𝑠𝑛 = ∑𝑛

𝑘=0 𝑎𝑘 收斂於 𝐿．然則由極限定義知、於凡正數 𝜀 >
0 之中、必存有一自然數 𝑁、而凡自然數 𝑛 之 𝑛 > 𝑁 + 1 者

|𝑠𝑛−1 − 𝐿| < 𝜀
2

然則

|𝑠𝑛 − 𝐿| < 𝜀
2

又因 𝑠𝑛 = 𝑠𝑛−1 + 𝑎𝑛、故 ∀𝑛 > 𝑁

|𝑠𝑛 − 𝐿 − (𝑠𝑛−1 − 𝐿)| ≤ |𝑠𝑛 − 𝐿| + |𝑠𝑛−1 − 𝐿| < 𝜀

故 lim𝑛→∞ 𝑎𝑛 = 0． ∎

欲料反之然否、請道以下例．

例 2（調和級數）

調和級數者、形如 ∑∞
𝑛=1 1/𝑛 之級數也．雖 1/𝑛 → 0 於 𝑛 → ∞、然其級數發散．請

證以比較審斂法：

∑
∞

𝑛=1

1
𝑛

= 1 + 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

+ 1
7

+ 1
8

+ ⋯

分組而計：

6
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原式 = 1 + 1
2

+ (1
3

+ 1
4
) + (1

5
+ 1

6
+ 1

7
+ 1

8
) + ⋯

> 1 + 1
2

+ (1
4

+ 1
4
) + (1

8
+ 1

8
+ 1

8
+ 1

8
) + ⋯

= 1 + 1
2

+ 1
2

+ 1
2

+ ⋯

無界而知其發散．此為 Nicolaus Oresmius 於十四世紀所證也．

有諸據可以斷級數之斂散．請道其詳．

2.1.1 檢比術

2.1.2 檢根術

2.2 常數 e
常數 e、或曰自然底數、初見於複利率之計算．凡 𝑛 > 0 有定義曰

e ≔ lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

(1 + 1
𝑛

)
𝑛

此處唯需證明 RHS 收斂．請道其證法．

𝑎𝑛 = ∑
𝑛

𝑘=0
(𝑛

𝑘
)(1

𝑛
)

𝑘
= ∑

𝑛

𝑘=0

𝑛𝑘

𝑘!𝑛𝑘

𝑛𝑘/(𝑘!𝑛𝑘) > 0 、則知 𝑎𝑛 之嚴格遞增矣． 考慮

𝑏𝑛 ≔ (1 + 1
𝑛

)
𝑛+1

2

𝑏𝑛
𝑏𝑛−1

= (1 − 1
𝑛2 )

𝑛−1
2

< 1

故 𝑏𝑛 單調遞減且 𝑏𝑛 = 𝑎𝑛√1 + 1/𝑛 > 𝑎𝑛, 故 𝑏𝑛 皆 𝑎𝑛 之上界也．故知 𝑎𝑛 收斂．2 = 𝑎1 <
e < 𝑏1 = 2

√
2．1)

例 3（別證）

茲定義曰 𝑒𝑛 ≔ ∑𝑛
𝑘=0 1/𝑘!、由 (∀𝑘 ≥ 1) 1/𝑘! ≤ 1/2𝑘−1

1) 實則 𝑏𝑛 ≃ 𝑎𝑛 as 𝑛 → ∞
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𝑒𝑛 = 1 + 1 + 1
2

+ 1
2 × 3

+ ⋯ + 1
2 × ⋯ × (𝑛 − 1) × 𝑛

≤ 1 + 1 + 1
2

+ 1
2 × 2

+ ⋯ + 1
2𝑛−1

≤ 3

抑由 ∀𝑘 ≥ 2

1
𝑘!

≤ 1
𝑘(𝑘 − 1)

= 1
𝑘 − 1

− 1
𝑘

𝑒𝑛 = 2 + ∑
𝑛

𝑘=2

1
𝑘!

≤ 2 + (1 − 1
𝑛

) ≤ 3

得 3 者 𝑒𝑛 之上界也．同理可證 𝑒𝑛 之收斂． 由定義知 sup 𝑎𝑛 = e 也．以前例亦得證 𝑒𝑛 

之收斂．然 lim𝑛→∞ 𝑒𝑛 ≟ e 之真僞猶未能辨、不宜臆斷．

再證二者收斂於同處．庶幾以夾逼定理證之、唯需各項 𝑎𝑛 < 𝑒𝑛 < e．以上圖料其然
也．然理學也非證不信非驗不服．請證之如下．

證 . 張 𝑎𝑛 如下, ∀𝑘 < 𝑛

𝑎𝑛 = ∑
𝑛

𝑚=0

1
𝑚!

𝑛
𝑛

𝑛 − 1
𝑛

⋯𝑛 − 𝑚 + 1
𝑛

= 1 + 1 + 1
2!

(1 − 1
𝑛

) + ⋯ + 1
𝑛!

(1 − 1
𝑛

)⋯(1 − 𝑛 − 1
𝑛

)

> 1 + 1 + 1
2!

(1 − 1
𝑛

) + ⋯ + 1
𝑘!

(1 − 1
𝑛

)⋯(1 − 𝑘 − 1
𝑛

)

令 𝑛 → ∞．然則 𝑘 ∈ 𝗡

e > 1 + 1 + 1
2!

+ ⋯ + 1
𝑘!

= 𝑒𝑘

逐項比較式 1 與 𝑒𝑛、知 𝑒𝑛 > 𝑎𝑛．故

lim
𝑛→∞

𝑒𝑛 = e ∎

2.2.1 指數函數

定義 exp 函數曰

定義 2（exp 函數）

exp 𝑥 ≔ ∑
∞

𝑛=0

𝑥𝑛

𝑛!

審其斂散、法以比值
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| 𝑥𝑛+1

(𝑛 + 1)!
| / |𝑥

𝑛

𝑛!
| = | 𝑥

𝑛 + 1
| → 0  當 𝑛 → ∞

故冪級數 exp 𝑥 於 𝗥 處處絕對收斂．

2.3 差分方程論

請問線性微分方程如 𝑦″ + 𝑦 = 0 者當作何解？得本征方程 𝑟2 + 1 = 0 有根 𝑟 = ±𝑖 故知
通解爲 𝑦 = 𝑐1 cos 𝑥 + 𝑐2 sin 𝑥．代入即明此誠爲其解也．此全解耶? 請論其理． 定義數列 

{𝑥𝑛} 之前向差分算子曰

Δ𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛

而逆向差分算子曰

𝛁𝑥𝑛 = 𝑥𝑛 − 𝑥𝑛−1

𝑛 ≥ 0 階差分遞歸定義曰

Δ𝑛 = {𝐼 if 𝑛 = 0
Δ ∘ Δ𝑛−1 if 𝑛 > 0

因 Δ(𝑎𝑥𝑛 + 𝑏𝑦𝑛) = 𝑎Δ𝑥𝑛 + 𝑏Δ𝑦𝑛、可知 Δ 爲線性算子．又以 𝐼 之線性、知 Δ𝑛 亦線性

也． 稱形如

∑
𝑛

𝑘=0
𝑎𝑘Δ𝑘𝑥𝑘 = 𝑏

之方程式曰 𝑛 階常係數差分方程．特稱 𝑏 = 0 者爲齊次、否則爲非齊次．若有一列數 𝑥𝑛 

可令 𝑥𝑛 = 𝑥𝑛 滿足方程、則稱 𝑥𝑛 爲方程之解． 請探其性質．凡非齊次方程之解 {𝑥𝑛}、
{𝑦𝑛}、其和 {𝑥𝑛 + 𝑦𝑛} 亦解矣

∑
𝑛

𝑘=0
𝑎𝑘Δ𝑘(𝛼𝑥𝑘 + 𝛽𝑦𝑘) = 𝛼 ∑

𝑛

𝑘=0
𝑎𝑘Δ𝑘𝑥𝑘 + 𝛽 ∑

𝑛

𝑘=0
𝑎𝑘Δ𝑘𝑦𝑘 = 0
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