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Gradient Descent

 Uwni 煢鴉  uwni@example.com

Optimization problems can be divided into minimization and maximization categories, 

and maximization problems can always be transformed into equivalent minimization 

problems. Therefore, in the following text, we will focus on minimization problems. 

Gradient descent is an iterative optimization algorithm used to find the local minimum 

of a function. It gradually approaches the minimum point by moving in the opposite 

direction of the function’s gradient.

1 EQUIVALENT PROBLEMS

First, let us prove some lemmas about monotonicity.

Proposition 1（Order Preservation of Strictly Monotonic Functions）If 𝑓 is a 

strictly increasing function, then

𝑥1 < 𝑥2 ↔ 𝑓(𝑥1) < 𝑓(𝑥2)

That is, when the output strictly increases, the input must strictly increase.

Proof . (→) This is the definition of strictly increasing, 𝑥1 < 𝑥2 → 𝑓(𝑥1) < 𝑓(𝑥2)
(←) By contradiction, if 𝑥1 ≥ 𝑥2 then 𝑓(𝑥1) ≥ 𝑓(𝑥2), which is a contradiction. ∎

Proposition 2（Strictly Monotonic Function → Injection）If 𝑓 is a strictly mo­

notonic function, then 𝑓 is injective. That is,

𝑥1 = 𝑥2 ↔ 𝑓(𝑥1) = 𝑓(𝑥2)

Proof . (→) This follows from the definition of functions.

(←) We need to prove injectivity. Taking 𝑓 strictly increasing on 𝑋 as an example. 

Let 𝑥1, 𝑥2 ∈ 𝑋, 𝑓(𝑥1) = 𝑓(𝑥2). Suppose 𝑥1 < 𝑥2, then by strict monotonicity, 𝑥1 < 𝑥2 →
𝑓(𝑥1) < 𝑓(𝑥2), which is a contradiction. Similarly 𝑥1 ≯ 𝑥2, therefore 𝑥1 = 𝑥2. ∎

Proposition 3（Strictly Monotonic Functions Preserve Extreme Points）Let 𝑌 ⊆
𝗥, 𝑓 : 𝑋 → 𝑌  be an arbitrary function, and 𝑔 : 𝑌 → 𝗥 be a strictly increasing 

function. Then 𝑔 ∘ 𝑓 and 𝑓 have the same extreme points. Conversely, they have 

opposite extreme points.

Proof . By the lemma, we know 𝑥1 ≤ 𝑥2 ↔ 𝑔(𝑥1) ≤ 𝑔(𝑥2) Thus for some point 𝑥∗ ∈ 𝑋, 

∃𝛿 > 0, ∀𝑥 ∈ 𝑈(𝑥∗, 𝛿)

𝑓(𝑥∗) ≤ 𝑓(𝑥) ↔ 𝑔(𝑓(𝑥∗)) ≤ 𝑔(𝑓(𝑥))

1

https://uwni.blog/posts/gradient-descent/index.html
https://uwni.blog/posts/gradient-descent/index.html
https://uwni.blog/posts/gradient-descent/index.html?t=t8pazn
mailto:uwni@example.com
mailto:uwni@example.com


E
d
it
io

n
 2

0
2
6
-0

1
-1

1
 1

3
:0

4
:3

5
. 
A
cc

es
s 

th
e 


w
eb

pa
ge

 o
f 
th

is
 a

rt
ic

le
. 
©
U

w
n
i,
 A

ll
 R

ig
h
ts

 R
es

er
ve

d
.

This proves that a minimum point of 𝑓 is also a minimum point of 𝑔 ∘ 𝑓 , and a minimum 

point of 𝑔 ∘ 𝑓 is also a minimum point of 𝑓 . ∎

Based on this, for the optimization problem

arg min 𝑓(𝑥)

it always has the same solution as arg min 𝑔 ∘ 𝑓(𝑥), if 𝑔 is a strictly increasing function. 

Or arg max 𝑔 ∘ 𝑓(𝑥), if 𝑔 is a strictly decreasing function.

Example 1

Consider an interesting matrix optimization problem that demonstrates the equiva­

lence of different objective functions under monotonic transformations.

Let 𝑿 = (𝑥𝑖𝑗)𝑛×𝑛
 be a non-negative matrix with column sum constraints: 

∑𝑛
𝑖=1 𝑥𝑖𝑗 = 𝑐 for all 𝑗 (where 𝑐 is a constant).

Define two objective functions:

𝑓1(𝑿) =
∑𝑛

𝑖=1 𝑥𝑖𝑖

∑𝑖≠𝑗 𝑥𝑖𝑗

(diagonal elements / off-diagonal elements)

𝑓2(𝑿) =
∑𝑛

𝑖=1 𝑥𝑖𝑖

∑𝑛
𝑖,𝑗=1 𝑥𝑖𝑗

(diagonal elements / all elements)

Due to the column sum constraint, the total sum of all elements is: ∑𝑛
𝑖,𝑗=1 𝑥𝑖𝑗 =

𝑛𝑐

Therefore: 𝑓2(𝑿) = (∑𝑛
𝑖=1 𝑥𝑖𝑖)/(𝑛𝑐)

The sum of off-diagonal elements is: ∑𝑖≠𝑗 𝑥𝑖𝑗 = 𝑛𝑐 − ∑𝑛
𝑖=1 𝑥𝑖𝑖

So: 𝑓1(𝑿) = (∑𝑛
𝑖=1 𝑥𝑖𝑖)/(𝑛𝑐 − ∑𝑛

𝑖=1 𝑥𝑖𝑖)

Key Observation: Let 𝑠 = ∑𝑛
𝑖=1 𝑥𝑖𝑖, then:

• 𝑓2 = 𝑠/(𝑛𝑐)
• 𝑓1 = 𝑠/(𝑛𝑐 − 𝑠)

These two functions have a monotonic relationship: 𝑓1 = 𝑓2/(1 − 𝑓2) ⋅ 1/𝑛

Since 𝑓1 is a strictly increasing function of 𝑓2 (in the range 𝑓2 < 1), we have:

The optimization problems max 𝑓1(𝑿) and max 𝑓2(𝑿) are equivalent and have 

the same optimal solution.

2
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2 UNCONSTRAINED CASE

𝗥𝑛 is the 𝑛-dimensional Euclidean space. 𝒙 ∈ 𝗥𝑛, 𝑓 : 𝗥𝑛 → 𝗥 is a differentiable function. 

Finding the minimum point and minimum value of 𝑓 is the optimization problem

min
𝒙∈𝗥𝑛

𝑓(𝒙)

The iterative equation is

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝛁𝑓(𝒙𝑘)

where the step size 𝛼 is a positive number that determines the update magnitude at each 

iteration. 𝛁𝑓(𝒙𝑘) is the gradient of function 𝑓 at point 𝒙𝑘. The algorithm’s goal is to 

make 𝒙𝑘 → 𝒙∗ as 𝑘 → ∞ where 𝒙∗ ∈ arg min 𝑓(𝒙). that is to say, 𝒙∗ is a minimum. The 

pseudocode is as follows:

Input: initial point 𝒙0, step length 𝛼 > 0, tolerance 𝜀 > 0, max iterations 𝑁
Output: 𝒙∗

1 𝑘 ← 0
2 while 𝑘 < 𝑁
3 𝒈𝑘 ← 𝛁𝑓(𝒙𝑘)
4 𝒙𝑘+1 ← 𝒙𝑘 − 𝛼𝒈𝑘
5 if 𝑓(𝒙𝑘+1) < 𝜀 then

6 return 𝒙𝑘+1
7 𝑘 ← 𝑘 + 1
8 return 𝒙𝑘

Algorithm 1: Pseudocode of Gradient Descent

Let us look at an example

min
(𝑥1,𝑥2)∈𝗥2

𝑓(𝑥1, 𝑥2)

where 𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2. First, we know through analytical methods that for 

𝑥1, 𝑥2 ∈ 𝗥

𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2 = (𝑥1, 𝑥2)(
1
1
2

1
2
1
)(𝑥1

𝑥2
) ≥ 0

Equality holds if and only if 𝑥1 = 0, 𝑥2 = 0. Therefore, the minimum value 0 is achieved 

at the origin. Next, we use gradient descent to solve this.

𝛁𝑓(𝑥1
𝑥2

) = (2𝑥1 + 𝑥2
2𝑥2 + 𝑥1

)

(𝑥1
𝑥2

)
𝑘+1

= (𝑥1
𝑥2

)
𝑘

− 𝛼(2𝑥1 + 𝑥2
2𝑥2 + 𝑥1

)
𝑘

3
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We set the initial condition as 𝑥0 = (1.0, 2.0)T, step size 𝛼 = 0.1, and stopping condition 

as 𝑓 ≤ 10−20. After 212 iterations, the function value reaches 9.925765507684842e-21. The 

trajectory left by each iteration in the feasible region is shown in the figure below. The 

black solid lines in the figure are the contour lines of function 𝑓 , and the arrows indicate 

the gradient field. The coloring indicates the magnitude of the function value, with darker 

colors representing larger function values. The red points represent the positions updated 

at each iteration, and the connecting lines are the iteration trajectories. It can be seen 

that each iteration moves opposite to the gradient direction with step size proportional 

to the gradient magnitude, and the iteration points gradually approach the origin—the 

theoretical minimum point.

When we increase the step size to 0.4, after 44 iterations, the function value reaches 

7.503260807194337e-21.

When we increase the step size to 0.5, after 35 iterations, the function value reaches 

5.929230630780102e-21.

If the step size is increased to 0.6, it leads to divergence. Therefore

4
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Figure 1: Gradient Descent Visualization

It is not difficult to see that the iteration speed is related to the step size, which can lead to 

divergence. Therefore, we need to choose an appropriate step size to ensure convergence.

3 CONSTRAINED CASE

When dealing with constrained optimization problems, we need to find the minimum of 

a function 𝑓(𝒙) subject to constraints. The general form is:

min
𝒙∈𝗥𝑛

𝑓(𝒙)

subject to 𝑔𝑖(𝒙) ≤ 0,  𝑖 = 1, 2, …, 𝑚

ℎ𝑗(𝒙) = 0,  𝑗 = 1, 2, …, 𝑙

5
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For constrained problems, we cannot simply move in the negative gradient direction as 

this may violate the constraints. Instead, we need to project the gradient onto the feasible 

region or use penalty methods.

3.1 Projected Gradient Method

The projected gradient method modifies the standard gradient descent by projecting each 

iteration onto the feasible set 𝒞︀:

𝒙𝑘+1 = Π𝒞︀(𝒙𝑘 − 𝛼𝛁𝑓(𝒙𝑘))

where Π𝒞︀ denotes the projection operator onto the constraint set 𝒞︀.

The pseudocode for the projected gradient method is:

Algorithm Projected Gradient Method for minimize 𝑓 subject to 𝒙 ∈ 𝒞︀
Input: initial point 𝒙0 ∈ 𝒞︀, step length 𝛼 > 0, tolerance 𝜀 > 0, max iterations 𝑁
Output: 𝒙∗

1 𝑘 ← 0
2 while 𝑘 < 𝑁
3 𝒈𝑘 ← 𝛁𝑓(𝒙𝑘)
4 𝒚𝑘+1 ← 𝒙𝑘 − 𝛼𝒈𝑘
5 𝒙𝑘+1 ← Π𝒞︀(𝒚𝑘+1)
6 if 𝑓(𝒙𝑘+1) < 𝜀 then

7 return 𝒙𝑘+1
8 end

9 𝑘 ← 𝑘 + 1
10 end

11 return 𝒙𝑘

3.2 Example: Linear Constraint

Consider the optimization problem:

min
(𝑥1,𝑥2)∈𝗥2

𝑓(𝑥1, 𝑥2)

subject to 𝑥2 = 1

where 𝑓(𝑥1, 𝑥2) = 𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2 (same as the unconstrained case).

The feasible set is the line 𝒞︀ = {(𝑥1, 𝑥2) : 𝑥2 = 1}. The unconstrained minimum (0, 0) 
is not feasible, so we expect the constrained optimum to lie on the constraint.

The gradient is the same as in the unconstrained case.

For the linear constraint 𝑥2 = 1, the projection operation onto the line is:

Π𝒞︀(𝒚) = (𝑦1
1 )

6
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Algorithm implementation:

(𝑥1
𝑥2

)
𝑘+1

= Π𝒞︀((𝑥1
𝑥2

)
𝑘

− 𝛼(2𝑥1 + 𝑥2
2𝑥2 + 𝑥1

)
𝑘
)

We demonstrate the algorithm starting from the same initial point as the unconstrained 

case:

We set the initial point as 𝑥0 = (1.0, 2.0)T, which lies off the constraint. The algorithm 

first projects this point onto the constraint 𝑥2 = 1, resulting in (1.0, 1.0). After 1000 

iterations, it converges to the constrained optimal point with function value 0.75.

The visualization below shows the optimization trajectory and the projection process. 

The black line represents the constraint 𝑥2 = 1.

For all iterations, the visualization shows (with later iterations becoming more 

transparent):

• Red arrows: gradient steps −𝛼𝛁𝑓(𝒙𝑘) from current point to unconstrained update

• Orange dotted lines: projection steps from the unconstrained update back to the 

constraint

This clearly demonstrates how the projected gradient method alternates between taking 

gradient steps and projecting back to the feasible set. The gradient arrows show both the 

direction and magnitude of the descent step, while the projection steps ensure feasibility. 

The path successfully reaches the constrained optimal point (−0.5, 1.0).

7
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Figure 2: Constrained Gradient Descent Visualization

3.3 Penalty Method

Another approach for handling constraints is the penalty method, where we convert the 

constrained problem into an unconstrained one by adding penalty terms:

min
𝒙∈𝗥𝑛

𝐿(𝒙, 𝜌) = 𝑓(𝒙) + 𝜌 ∑
𝑚

𝑖=1
max(0, 𝑔𝑖(𝒙))

2
+ 𝜌 ∑

𝑙

𝑗=1
ℎ2

𝑗(𝒙)

where 𝜌 > 0 is the penalty parameter. As 𝜌 → ∞, the solution of the penalized problem 

approaches the solution of the original constrained problem.

4 CONVERGENCE

Next, we rigorously analyze the convergence of gradient descent.

8
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5 CONVEX OPTIMIZATION

If the optimization problem is convex, then gradient descent can guarantee finding the 

global minimum. The definition of a convex function is: for any 𝑥, 𝑦 ∈ 𝗥𝑛 and 𝜆 ∈ [0, 1], 
we have

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)

9
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