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Gradient Descent
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Optimization problems can be divided into minimization and maximization categories,
and maximization problems can always be transformed into equivalent minimization
problems. Therefore, in the following text, we will focus on minimization problems.
Gradient descent is an iterative optimization algorithm used to find the local minimum
of a fundtion. It gradually approaches the minimum point by moving in the opposite

direction of the fundtion’s gradient.

1 EQUIVALENT PROBLEMS

First, let us prove some lemmas about monotonicity.

PROPOSITION 1 (Order Preservation of Stri¢tly Monotonic Functions) If f is a

stridtly increasing function, then
T < Ty ¢ f(21) < f(22)

That is, when the output stri¢tly increases, the input must stri¢tly increase.

Proof . (—) This is the definition of strictly increasing, x; < x5 — f(z7) < f(zy)
(+) By contradidtion, if z; > x4 then f(z;) > f(z,), which is a contradiction. ]

PROPOSITION 2 (Stri¢tly Monotonic Funcétion — Injedtion) If f is a strictly mo-
notonic function, then f is injec¢tive. That is,

Ty =Ty ¢ f(z1) = f(25)

Proof . (—) This follows from the definition of functions.

(«-) We need to prove injectivity. Taking f stri¢tly increasing on X as an example.
Let 1,25 € X, f(z;) = f(x4). Suppose z; < x4, then by stri¢t monotonicity, z; < z, —
f(z,) < f(z,), which is a contradiction. Similarly z; % x,, therefore x, = x,. [ ]

PROPOSITION 3 (Stri¢tly Monotonic Functions Preserve Extreme Points) Let Y C
R, f: X =Y be an arbitrary function, and g:Y — R be a stri¢tly increasing
fundtion. Then go f and f have the same extreme points. Conversely, they have

opposite extreme points.

Proof . By the lemma, we know z; < z, <> g(z;) < g(z,) Thus for some point z* € X,
36 > 0,Vz € U(z*,0)

f(@*) < f(x) < g(f(z7) < g(f(z))
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This proves that a minimum point of f is also a minimum point of g o f, and a minimum
point of go f is also a minimum point of f. u

Based on this, for the optimization problem
arg min f(x)

it always has the same solution as argmingo f(x), if g is a stric¢tly increasing function.
Or argmax g o f(x), if g is a stri¢tly decreasing function.

ExAMPLE 1

Consider an interesting matrix optimization problem that demonstrates the equiva-

lence of different objective functions under monotonic transformations.

Let X = (x”) be a non-negative matrix with column sum constraints:
nxn

Z?zl z;; = c for all j (where c is a constant).

Define two objedtive fundtions:

(diagonal elements / all elements)

Due to the column sum constraint, the total sum of all elements is: Z?j: | Tij =

)

nc

Therefore: fy(X) = (Z:Zl acZZ)/(nc)
The sum of off-diagonal elements is: Zi# T;; = nc— Z?:l x;;
So: f1(X) = (Z?Zl xm)/(nc - Z?zl xm)
Key Observation: Let s = 3" | z;;, then:
« f2=s/(nc)
« fi=s/(nc—s)
These two functions have a monotonic relationship: f; = fo/(1— f5) - 1/n

Since f; is a stridtly increasing function of f, (in the range f, < 1), we have:

The optimization problems max f; (X) and max f,(X) are equivalent and have
the same optimal solution.
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2 UNCONSTRAINED CASE

R" is the n-dimensional Euclidean space. * € R", f : R® — R is a differentiable fundtion.

Finding the minimum point and minimum value of f is the optimization problem

min f(x)

The iterative equation is
mk_,’_l = :Bk — an(:I:k)

where the step size « is a positive number that determines the update magnitude at each
iteration. V f(x;) is the gradient of function f at point x,. The algorithm’s goal is to

*

make x; — x* as k — oo where * € argmin f(x). that is to say, * is a minimum. The

pseudocode is as follows:

Input: initial point x,, step length o > 0, tolerance € > 0, max iterations N
Output: =*
1 k<0
2 while k < N
3| gr+ Vi(zg)
Tpy1 < T — Gy,
if f(x),,) < € then
return x;
k—k+1

8 return x,

N O Ot

Algorithm 1: Pseudocode of Gradient Descent

Let us look at an example

min T,,T
(3017352)€R2f< b 2>

where f(z1,z5) = 22 + 2,75 + 3. First, we know through analytical methods that for
z1,T9 €R

13\ (=
T2 + 129 + 7% = (331,3/:2)(l i) (x;) >0
2

Equality holds if and only if z; = 0,2, = 0. Therefore, the minimum value 0 is achieved

at the origin. Next, we use gradient descent to solve this.

T\ (2z +xy
\Z2i (a:z) o (2332 +$1)

) il YR i)
¥2) o1 zy) 2xy + 14 N
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We set the initial condition as z, = (1.0,2.0)T, step size a = 0.1, and stopping condition
as f < 10720, After 212 iterations, the function value reaches 9.925765507684842¢-21. The
trajedtory left by each iteration in the feasible region is shown in the figure below. The
black solid lines in the figure are the contour lines of function f, and the arrows indicate
the gradient field. The coloring indicates the magnitude of the function value, with darker
colors representing larger fundtion values. The red points represent the positions updated
at each iteration, and the connecting lines are the iteration trajectories. It can be seen
that each iteration moves opposite to the gradient direction with step size proportional
to the gradient magnitude, and the iteration points gradually approach the origin—the

theoretical minimum point.

When we increase the step size to 0.4, after 44 iterations, the fundtion value reaches
7.503260807194337e-21.

When we increase the step size to 0.5, after 35 iterations, the fundtion value reaches
5.929230630780102e-21.

If the step size is increased to 0.6, it leads to divergence. Therefore
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Function f(x1,X2) = Xx12 + X1X2 + X22 with Gradient Field

-@- o = 0.1 path
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Figure 1: Gradient Descent Visualization

It is not difficult to see that the iteration speed is related to the step size, which can lead to
divergence. Therefore, we need to ¢hoose an appropriate step size to ensure convergence.

3 CONSTRAINED CASE

When dealing with constrained optimization problems, we need to find the minimum of
a fundtion f(x) subjedt to constraints. The general form is:

min  f(z)

subject to g,(x) <0, i=1,2,....m
hi() =0, j=1,2,...1
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For constrained problems, we cannot simply move in the negative gradient direction as
this may violate the constraints. Instead, we need to project the gradient onto the feasible
region or use penalty methods.

3.1 PROJECTED GRADIENT METHOD

The projected gradient method modifies the standard gradient descent by projecting each
iteration onto the feasible set C:

zyq = He(zy —aV f(zy))
where Il denotes the projection operator onto the constraint set €.

The pseudocode for the projected gradient method is:

Algorithm Projected Gradient Method for minimize f subject to « € €
Input: initial point x, € C, step length a > 0, tolerance € > 0, max iterations N
Output: =*
k<0
while k < N
gi < V()
Y1 < T — Gy,
Trp1 < Mo (Ypsr)
if f(x),,) < € then
return x;
end
k—k+1

end

© o0 N O Ot s W N =

—
= o

return x;

3.2 EXAMPLE: LINEAR CONSTRAINT

Consider the optimization problem:

min X1,
(zl,zz)eRz f( 1 2)

subject to x5, =1
where f(z1,25) = 22 + 7,75 + 23 (same as the unconstrained case).

The feasible set is the line € = {(z;, z,) : 5 = 1}. The unconstrained minimum (0, 0)

is not feasible, so we expect the constrained optimum to lie on the constraint.
The gradient is the same as in the unconstrained case.

For the linear constraint x, = 1, the projection operation onto the line is:

te(w) = (%)
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Algorithm implementation:

x x 2r, +x
(m1> =H8<(m1) _a(2$1+x2) )
2/ g1 2/ k 2 1/ k

We demonstrate the algorithm starting from the same initial point as the unconstrained

case:

We set the initial point as z, = (1.0,2.0)T, which lies off the constraint. The algorithm
first projecéts this point onto the constraint x, =1, resulting in (1.0,1.0). After 1000

iterations, it converges to the constrained optimal point with fundtion value 0.75.

The visualization below shows the optimization trajec¢tory and the projedtion process.
The black line represents the constraint =, = 1.

For all iterations, the visualization shows (with later iterations becoming more
transparent):

o Red arrows: gradient steps —a'V f(x;,) from current point to unconstrained update

e Orange dotted lines: projection steps from the unconstrained update back to the
constraint

This clearly demonstrates how the projected gradient method alternates between taking
gradient steps and projecting back to the feasible set. The gradient arrows show both the
direction and magnitude of the descent step, while the projection steps ensure feasibility.
The path successfully reaches the constrained optimal point (—0.5,1.0).
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Constrained Optimization: f(x1,X2) = X12 + X1X2 + X22 subject to x> = 1

3
— Constraint: x2 = 1
@ [teration points
e Starting point
* Constrained optimum
2 -
x 17
0 -
-1

X1

Figure 2: Constrained Gradient Descent Visualization

3.3 PENALTY METHOD

Another approach for handling constraints is the penalty method, where we convert the
constrained problem into an unconstrained one by adding penalty terms:

m !
min L(ac, p) = f(ﬂ?) +p Z max(O, gi(w))2 +p Z h?(m)
i=1 J=1

xeR™

where p > 0 is the penalty parameter. As p — oo, the solution of the penalized problem
approaches the solution of the original constrained problem.

4 CONVERGENCE

Next, we rigorously analyze the convergence of gradient descent.


https://uwni.blog/posts/gradient-descent/index.html
https://uwni.blog/posts/gradient-descent/index.html

[Z webpage

5 CONVEX OPTIMIZATION

If the optimization problem is convex, then gradient descent can guarantee finding the
global minimum. The definition of a convex function is: for any z,y € R™ and X € [0, 1],

we have

fz+ (1 =Ny <Af(z) + (1= N)f(y)
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