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線性代數

 Uwni 煢鴉  uwni@example.com

我們的思路：

• 從解線性方程組說起

• 矩陣和 𝕂𝑛 向量的定義
• 矩陣的運算

• 对于向量的推广 - 線性空間

‣ 线性无关·张成·基底

– Steinitz 交換定理

‣ 矩阵的行空间与列空间

• 对于矩阵的推广 - 線性映射

‣ 基变换与坐标变换

‣ 一般線性映射的矩陣表示

• 本征值与本征向量

‣ 本征多项式与最小多项式

‣ 代数重数与几何重数

• Jordan 分解

• 行列式

• 赋范空间

• 内积空间

‣ 正交基底与格拉姆-施密特正交化

‣ 施密特正交补空间

‣ 正交映射与幺正映射
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1 矩陣論

1.1 矩阵分析

如同 exp 函数在实数与复数域上的定义一样、我们可以定义矩阵的 exp 函数为

exp(𝑨) ≔ lim
𝑘→∞

(𝑰 + 1
1!
𝑨 +⋯+ 1

𝑘!
𝑨𝑘)

通常來說、直接計算矩陣的 exp 函數是比較困難的．然而對於一些特殊的矩陣、還是比較
容易的、比如、若 𝑫 是一個對角矩陣

𝑫 =
(

𝜆1 ⋱

𝜆𝑛)



因 e𝑥 在 𝗖 和 𝗥 上都是解析函數．所以

exp(𝑫) =

(


∑

∞
𝑘=0

𝜆𝑘1
𝑘!
⋱
∑∞
𝑘=0

𝜆𝑘𝑛
𝑘!)



=
(

e

𝜆1

⋱
e𝜆𝑛)



若 𝑨 是可對角化的、也就是說、𝑨 = 𝑷−1𝑫𝑷．我們將會發現

exp(𝑨) = exp(𝑷𝑫𝑷−1)

= lim
𝑘→∞

𝑰 + 1
1!
𝑷𝑫𝑷−1 +⋯+ 1

𝑘!
𝑷𝑫𝑘𝑷−1

= lim
𝑘→∞

𝑷(𝑰 + 1
1!
𝑫 +⋯+ 1

𝑘!
𝑫𝑘)𝑷−1

= 𝑷 exp(𝑫)𝑷−1

= 𝑷
(

e

𝜆1

⋱
e𝜆𝑛)

𝑷−1

其中 𝜆1,…, 𝜆𝑛 是 𝑨 的本徵值．

1.1.1 矩陣的導數

定義對矩陣函數求導即對其每個元素求（偏）導．

 d
 d𝑡
𝑨(𝑡) ≔ (  d

 d𝑡
𝑎𝑖𝑗(𝑡))

其中  d𝑨/ d𝑡 可寫爲 𝐷𝑨 或 𝑨′．∂𝑨/∂𝑡 可寫爲 ∂𝑡𝑨．

命題 1 𝐷 ∈ ℒ︀((𝕂𝑚×𝑛)𝕂) 其中 (𝕂𝑚×𝑛)𝕂 爲所有 𝕂 → 𝕂𝑚×𝑛 的函數空間．
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1.1.2 常係數微分方程

考慮向量值函數 𝒚(𝑡) : 𝕂 → 𝕂𝑛×1 滿足以下微分方程

𝒚′ = 𝑨𝒚

其中 𝑨 ∈ 𝕂𝑛×𝑛 是一個常方陣．欲解此方程、我們先尋找再示其唯一的思路來找到完整的
解．我們依照經驗、猜測解的形式爲

𝒚(𝑡) =
(

𝑦1(𝑡)⋮
𝑦𝑛(𝑡))


 =

(

𝑥1e

𝜆𝑡

⋮
𝑥𝑛e𝜆𝑡)


 = e𝜆𝑡𝒙

其中 𝕂𝑛×1 ∋ 𝒙 = (𝑥1,…, 𝑥𝑛)
𝖳 是待定常向量、𝜆 ∈ 𝕂 是待定係數．於是 e𝜆𝑡𝒙 是解当且仅当

𝜆e𝜆𝑡𝒙 = 𝒚′ = 𝑨𝒚 = 𝑨e𝜆𝑡𝒙

等价于求 𝑨 的本徵值問題

𝑨𝒙 = 𝜆𝒙

解得本徵值 𝜆1,…, 𝜆𝑛 和對應的本徵向量 𝒙1,…, 𝒙𝑛． 其中 𝑐1,…, 𝑐𝑛 ∈ 𝕂 是任意常數．如此、

𝑐1e𝜆1𝑡𝒙1,…, 𝑐𝑛e𝜆𝑛𝑡𝒙𝑛

如果本征值互不相同、則本徵向量線性獨立．以命題 4

𝒚(𝑡) = 𝑐1e𝜆1𝑡𝒙1 +⋯+ 𝑐𝑛e𝜆𝑛𝑡𝒙𝑛

是原方程的通解．

命題 2（存在唯一定理）𝑨(𝑥)、𝒇(𝑥) 各元素在 𝐼 ≔ (𝑎, 𝑏) 上連續．𝑥0 ∈ 𝐼、𝒚0 ∈ 𝗥𝑛．
初值問題

 d𝒚
 d𝑥
= 𝑨(𝑥)𝒚(𝑥) + 𝒇(𝑥)

𝒚(𝑥0) = 𝒚0

在 𝐼 上存在唯一解．

是定理之證明需要 Picard-Lindelöf 定理．此處略．

命題 3（解空間的維度）𝑛 階齊次線性微分方程組

 d𝒚
 d𝑥
= 𝑨(𝑥)𝒚

的解集 𝑆 是 𝗥 上的 𝑛 維向量空間．

證 . 注意：你可能因爲代數方程組的經驗而誤認爲微分方程組的解空間的維度和 𝑨 的秩

相關．實則不然．縱使 𝑨 = 𝑶, 解空間 𝒚 = [𝑐1,…, 𝑐𝑛]
𝖳 的維度仍然是 𝑛．
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任取 𝑥0 ∈ (𝑎, 𝑏)．則由存在唯一性定理可知、∀𝒚0 ∈ 𝗥𝑛, ∃!𝒚 ∈ 𝑆, 𝒚(𝑥0) = 𝒚0．於是、我
們可以定義從初值到解的映射

𝐻 : 𝒚0 ↦ 𝒚(𝑥); 𝗥𝑛 → 𝑆

任取 𝒚01, 𝒚02 ∈ 𝗥𝑛, 𝑐1, 𝑐2 ∈ 𝗥、設

𝒚1 = 𝐻(𝒚01), 𝒚2 = 𝐻(𝒚02)

𝑐1𝒚1 + 𝑐2𝒚2 是方程的解、且 (𝑐1𝒚1 + 𝑐2𝒚2)(𝑥0) = 𝑐1𝒚01 + 𝑐2𝒚02．於是

𝐻(𝑐1𝒚01 + 𝑐2𝒚02) = 𝑐1𝒚1 + 𝑐2𝒚2 = 𝑐1𝐻(𝒚01) + 𝑐2𝐻(𝒚02)

因此、𝐻 是一個線性映射．因爲不同的初值對應不同的解、𝐻 是單映．又因爲任意解 𝒚 ∈
𝑆、𝒚(𝑥0) ∈ 𝗥𝑛、從而 𝐻(𝒚(𝑥0)) = 𝒚、故 𝐻 是滿映． 由是、𝐻 是一個線性同構．從而 

dim𝑆 = 𝑛． ∎

命題 4（推論）式 1 在 (𝑎, 𝑏) 上有 𝑛 個線性獨立的解 𝒚1,…, 𝒚𝑛、則通解爲

𝒚 = 𝑐1𝒚1 +⋯+ 𝑐𝑛𝒚𝑛
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2 线性方程组

從抽象的觀點來說、矩陣是線性變換在某個基底下的表示．它可以將十分抽象的線性空間

中的映射轉化爲座標空間中的矩陣乘法．另一方面、從歷史的發展和應用的觀點來說、矩

陣又是線性方程組的直接抽象．因此、研究矩陣本身就顯得尤為重要．

2.1 矩陣

𝑆 是集合、我們稱映射

𝑨 : 𝗡∗≤𝑚 ×𝗡∗≤𝑛 → 𝑆, (𝑖, 𝑗) ↦ 𝑎𝑖𝑗

爲 𝑆 上的 𝑚× 𝑛 矩陣．其值 𝑎𝑖𝑗 稱爲矩陣 𝑨 在指標 (𝑖, 𝑗) 處的元素、亦得記爲 (𝑨)𝑖𝑗． 

特別的、當 𝑚 = 𝑛 時、稱 𝑨 爲 𝑛 階方陣．當 𝑆 ⊆ 𝗥 時、稱 𝑨 爲實矩陣；當 𝑆 ⊆ 𝗖 時、

稱 𝑨 爲一個複矩陣． 記 𝑆𝑚×𝑛 ≔ 𝑆𝗡∗≤𝑚×𝗡∗≤𝑛 爲所有 𝑚× 𝑛 矩陣的集合．

方陣 𝑨 的 𝑎𝑖𝑗|𝑖=𝑗 元素稱爲 𝑨 的對角元．反之、𝑎𝑖𝑗|𝑖+𝑗=𝑛+1 元素稱爲 𝑨 的反對角元． 

當所有非對角線元素皆爲零時、稱該方陣爲對角陣．定義對角函數 diag : 𝑆𝑛 → 𝑆𝑛×𝑛 為

diag(𝜆1,…, 𝜆𝑛) ≔

(



𝜆1
0
⋮
0

0
𝜆2
⋮
0

⋯
⋯
⋱
⋯

0
0
⋮
𝜆𝑛)




定義 𝕂𝑛 上的對角陣

𝑰𝑛 ≔ diag(1,…, 1) =

(



1
0
⋮
0

0
1
⋮
0

⋯
⋯
⋱
⋯

0
0
⋮
1)




爲 𝑛 階單位陣．其中 1 是域 𝕂 的乘法幺元．

2.2 矩陣代數

定義二元算子 + : 𝕂𝑚×𝑛 ×𝕂𝑚×𝑛 → 𝕂𝑚×𝑛、

(𝑎𝑖𝑗) + (𝑏𝑖𝑗) = (𝑎𝑖𝑗 + 𝑏𝑖𝑗)

爲 𝕂𝑚×𝑛 上的加法．二元映射 ⋅ : 𝕂𝑚×𝑝 ×𝕂𝑝×𝑛 → 𝕂𝑚×𝑛、

(𝑎𝑖𝑗) ⋅ (𝑏𝑖𝑗) = (∑
𝑝

𝑘=1
𝑎𝑖𝑘𝑏𝑘𝑗)

爲 𝕂𝑚×𝑝 和 𝕂𝑝×𝑛 之間的乘法．一元算子 − : 𝕂𝑚×𝑛 → 𝕂𝑚×𝑛、

−(𝑎𝑖𝑗) = (−𝑎𝑖𝑗)
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2.3 從 GAUSS 消元法

尝试考虑解以下方程组

{

2𝑥 + 3𝑦 + 𝑧 = 1
4𝑥 + 𝑦 + 5𝑧 = 2
𝑥 + 2𝑦 + 3𝑧 = 3

(

24
1

3
1
2

1
5
3)



(

𝑥𝑦
𝑧)

 =

(

12
3)



定義 1（行階形矩陣）一個矩陣稱爲行階形（Row Echelon Form, REF）的、如果它满足

以下条件：

(1) 所有非零行都在零行之上．

(2) 每个非零行的首个非零元素（称为主元）位于其前一行主元的右侧．

比如對於下面的 4 × 5 矩陣、前三行是非零行、第四行是零行、所有的非零元素用藍色標
記、每一行的主元更用深藍色標記．照會行階形的定義、不難驗證之．

(



∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0 )





另根据定義的第二点、如果一个 𝑖, 𝑗 处的元素是主元、那其下的元素 𝑖+, 𝑗 必为零．因为其
下 𝑖+ 行的主元必须在 𝑗 右侧、从而 𝑖+, 𝑗 与其左边的元素皆为零．

2.4 初等变换

初等行变换是指一下三种矩阵的映射：

(1) 交换两行的位置．

(2) 将某一行乘以一个非零常数．

(3) 将某一行加上另一行的若干倍．

将以上定义的「行」换为「列」、即可得到初等列变换的定义．不难发现、初等变换是置

换（因为可逆且保阶）． 更进一步的、 𝑰 经三种行变换后分别称为三种初等行矩阵． 即

• 𝑬1(𝑖, 𝑗) 为 𝑰 交换第 𝑖 行和第 𝑗 行得到的矩阵；
• 𝑬2(𝑖, 𝜆) 为 𝑰 将第 𝑖 行乘以非零常数 𝜆 得到的矩阵；
• 𝑬3(𝑖, 𝑗, 𝜆) 为 𝑰 将第 𝑖 行加上第 𝑗 行的 𝜆 倍得到的矩阵．

命題 5 初等矩阵可逆

證 . 事实上不难验证

(1) 𝑬1(𝑖, 𝑗)−1 = 𝑬1(𝑖, 𝑗)
(2) 𝑬2(𝑖, 𝜆)−1 = 𝑬2(𝑖, 1/𝜆)
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(3) 𝑬3(𝑖, 𝑗, 𝜆)−1 = 𝑬3(𝑖, 𝑗, −𝜆) ∎

命題 6（初等变换与初等矩阵）

(1) 左乘初等矩阵等价于施加对应的初等行变换；

(2) 右乘初等矩阵等价于施加对应的初等列变换．

證 . 对于某种初等变换 𝜎 和对应的初等矩阵 𝑬 = 𝜎(𝑰) 和任意矩阵 𝑨、

(𝑬𝑨)𝑘,𝑙 =∑
𝑚
(𝑬)𝑘,𝑚(𝑨)𝑚,𝑙

我们希望证明 𝜎(𝑨) = 𝑬𝑨．于是

(第一类初等行变换) 设 𝑬 是交换第 𝑖 行和第 𝑗 行的初等矩阵、则
• 当 𝑘 ≠ 𝑖 且 𝑘 ≠ 𝑗 时、(𝑬)𝑘,𝑚 = (𝑰)𝑘,𝑚、因此 (𝑬𝑨)𝑘,𝑙 = (𝑨)𝑘,𝑙．
• 当 𝑘 = 𝑖 时、(𝑬)𝑖,𝑚 = (𝑰)𝑗,𝑚、因此 (𝑬𝑨)𝑖,𝑙 = (𝑨)𝑗,𝑙．
• 当 𝑘 = 𝑗 时、(𝑬)𝑗,𝑚 = (𝑰)𝑖,𝑚、因此 (𝑬𝑨)𝑗,𝑙 = (𝑨)𝑖,𝑙． 即左乘 𝑬 等价于交换 𝑨 

的第 𝑖 行和第 𝑗 行．

(第二类初等行变换) 设 𝑬 是将第 𝑖 行乘以非零常数 𝑐 的初等矩阵、则
• 当 𝑘 ≠ 𝑖 时、(𝑬)𝑘,𝑚 = (𝑰)𝑘,𝑚、因此 (𝑬𝑨)𝑘,𝑙 = (𝑨)𝑘,𝑙．
• 当 𝑘 = 𝑖 时、(𝑬)𝑖,𝑚 = 𝑐(𝑰)𝑖,𝑚、因此 (𝑬𝑨)𝑖,𝑙 = 𝑐(𝑨)𝑖,𝑙．

即左乘 𝑬 等价于将 𝑨 的第 𝑖 行乘以 𝑐．

(第三类初等行变换) 设 𝑬 是将第 𝑖 行加上第 𝑗 行的 𝑐 倍的初等矩阵、则
• 当 𝑘 ≠ 𝑖 时、(𝑬)𝑘,𝑚 = (𝑰)𝑘,𝑚、因此 (𝑬𝑨)𝑘,𝑙 = (𝑨)𝑘,𝑙．
• 当 𝑘 = 𝑖 时、(𝑬)𝑖,𝑚 = (𝑰)𝑖,𝑚 + 𝑐(𝑰)𝑗,𝑚、因此 (𝑬𝑨)𝑖,𝑙 = (𝑨)𝑖,𝑙 + 𝑐(𝑨)𝑗,𝑙．

即左乘 𝑬 等价于将 𝑨 的第 𝑖 行加上第 𝑗 行的 𝑐 倍．

对于右乘初等列矩阵的情况、对 𝑨 进行列变换、即对 𝑨𝖳 进行行变换后再转置回来、即：

(𝜎(𝑨𝖳))𝖳 = (𝑬𝑨𝖳)𝖳 = 𝑨𝑬𝖳

也就证明了右乘初等列矩阵等价于施加对应的初等列变换． ∎

作为这一命题的直接推论、我们知道初等变换以及有限次初等变换是线性置换．那么相反

地、我们自然的会问：任意 𝕂𝑚×𝑛 上的线性置换是否都能表示为有限次初等变换的复合？
答案是肯定的．

命題 7 设 𝑨,𝑩 是 𝑛 + 1 階方陣. 初等行变换 𝑨 數次得 𝑩, 那么与 𝑩 对应的线性方

程组和与 𝑨 对应的线性方程组线性同解.

證 .

∎

三類初等行變換對應了 Gaußsche 消元法的三類操作．因此這個定理說明了 Gaußsche 消

元法確實不會改變線性方程組的解集．
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命題 8（亚定方程组的解）如果齐次线性方程组 𝑨𝒙 = 𝟎 亚定、则必有非平凡解．

證 .

∎
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3 线性空间

我们以前学习线性代数时、都是以具体的方式进行的、比如解线性方程、矩阵运算等．在

本章中、我们将学习线性空间的抽象概念、它是向量和矩阵的推广．首先、你可能会问、为

什么我们需要学习如此抽象的概念？请看下面的例子．

我们至少在高中时就学习过向量、如位移、速度、力等．实际上、当我们说向量时、我

们的第一印象是它们必须有两个或三个分量、代表平面或空间中的一个点．但是在学习了

线性代数之后、我们了解到像 (1, 2, 3, 4, 5) 这样的东西也是向量、尽管我们无法想象它在
现实世界中的物理圖像．

所以、基本上、将向量的概念改变为任意数量的分量、是对原始概念的推广或抽象．这

样我们可以用新定义处理更多内容、但代价是失去一些物理意义．在本讲中、我们将重复

这个过程、进一步抽象向量的概念、以便我们能够找出其中一些共同的、通用的或一般的

属性．

让我们回顾一下从 𝗥3 到 𝗥𝑛 的抽象过程、在这里、我将给出一个更严格的定义、作
为让你熟悉代数结构的第一步．

回想一下、如果给定一个像 (𝑎, 𝑏, 𝑐, 𝑑) 这样的结构、这是一个向量吗？不、绝对不是．
实际上、它只是一个元组、即元素的有序有限序列或列表．顺便说一下、你也可以用有序

对来构造它．虽然我们通常默认将其视为向量、那是因为我们可以以非常自然的方式在其

上定义加法和标量乘法．但是仅使用元组的结构、我们无法对其进行任何操作、除非你事

先定义一些．例如、如果你尝试运行
python

1 (1, 2, 3) + (1, 2, 3)

在 Python 中、它将返回 (1, 2, 3, 1, 2, 3)、而如果你尝试在纸上写 (1, 2, 3) + (4, 5, 6)、读
者会默认认为它是 (1 + 4, 2 + 5, 3 + 6)．这是因为对于编程语言来说、+ 运算符被重载为连
接两个元组．但对于数学、特别是在座標空间中、+ 运算符被定义为逐个元素相加．所以你

会明白、在使用之前声明或至少知道符号的确切含义是很重要的、否则你会感到困惑．所

以、元组不是向量、但我们可以在其上定义向量结构、然后它就成为向量了．

3.0.1 向量的应用

然后、让我们回到向量的话题．例如、我们知道力可以分解为两个正交分量、我们用这个

来分析力学问题．为什么我们可以这样做？因为力是一个向量．但类似地、正弦信号

𝐴cos(𝜔𝑡 + 𝜑) = 𝐴cos𝜑 cos 𝜔𝑡 − 𝐴 sin𝜑 sin 𝜔𝑡

可以分解为两个分量 sin 𝜔𝑡 和 cos 𝜔𝑡、我们通常使用星座图来表示这种分解．你有没有注
意到这两种情况之间的相似性？因此、我们今天的目标是提出一个结构来处理所有类似的

情况．

从上面这两个例子来看、看起来像列表既不是成为向量的充分条件（因为列表上的加

法不一定是向量加法）、也不是必要条件（因为即使某些东西看起来不像列表、比如函数
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或多项式、它仍然可以表现得完全像向量）．那么、最终、什么是向量？我们应该如何定

义向量？

圖 1 （Hermann Günther Graßmann、1809-1877）线性代数的父亲之一．他在 1844年

发表了《线性代数的扩展理论》（Die Ausdehnungslehre）、形式化了线性代数的基本概念

在这里、我们将首先介绍域的概念、它是我们用来定义线性空间的基本代数结构．

3.1 域简介

在我们开始讨论向量本身之前、让我们从一个更基本的概念开始．我们的故事将从集合开

始、它是数学的基本构建块．假设有一个集合 𝑆．它太平凡（无聊）了、就像我们上面提
到的元组一样．仅使用一个集合、我们几乎什么都做不了．

所以、我们想在集合 𝑆 上定义一个二元运算、它是一个将集合的两个元素映射到集合

本身的函数．

定義 2（二元运算）集合 𝑆 上的二元运算 𝐴 是一个函数

𝐴 : 𝑆 × 𝑆 → 𝑆

以下是一些二元运算的例子：

例 1（一些二元运算的例子）

• 在 𝗥 上定义的 +,−,×、（/ 是二元运算吗？）
• 在集合上定义的 ∪,∩ 也是二元运算．（⊆,⊂ 是二元运算吗？）

• 在 {⊤,⊥} 上定义的 ∧,∨,⊕、（¬ 是二元运算吗？）

10
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然后我们可以定义1) 域是一个具有两个二元运算（加法和乘法）的集合 𝑆、它满足某些性
质．注意、“加法”和“乘法”这些名称只是名称、它们不一定意味着与实数的加法和乘

法相同．重要的是这些运算满足某些性质、然后“加法”和“乘法”满足以下性质．

定義 3（域）域是一个具有两个二元算子 + 和 ⋅ 的集合 𝑆、使得凡 𝑎, 𝑏, 𝑐 ∈ 𝑆

(加法的结合律) (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)

(加法的交换律) 𝑎 + 𝑏 = 𝑏 + 𝑎

(加法单位元2)) ∃0(𝑎 + 0 = 𝑎)

(加法逆元) ∀𝑎∃𝑏(𝑎 + 𝑏 = 0)

(乘法的结合律) (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)

(乘法的交换律) 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎

(乘法单位元) 𝑎 ⋅ 1 = 𝑎

(乘法逆元) 𝑎 ≠ 0 ⇒ ∃𝑏(𝑎 ⋅ 𝑏 = 1)

(乘法对加法的分配律) 𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐

證 .（0 + 𝑎 = 𝑎）显然．根据公理 2． ∎

实际上、我们称满足上述前 4 个性质的结构 (𝑆,+) 为交換羣、或 Abel 群． 所以、如果

我们定义阿贝尔群、那么可以给出一个更简单的定义、

定義 4 一个具有两个阿贝尔群的集合、(𝑆,+) 用于加法、(𝑆 ∖ {0}, ⋅) 用于乘法、并且
乘法对加法具有分配性．那么我们称之为域、记为 (𝑆,+ ⋅)．

域最常见的例子是分数、你可以很容易地验证分数满足域的所有性质．实数也是一个域、复

数也是．

例 2（域的例子）

• 𝗤 （分数）

• 𝗥 （实数）

• 𝗖 （复数）

同时、整数不是域、因为它们对于所有非零元素都没有乘法逆元（例如 1/2 ∉ 𝗭）、自然
数甚至不是群 [任务：搜索群的定义、并说明原因．]．

3.2 向量空间

现在我们准备好定义什么是向量空间了．

1) “域”这个术语来自德语单词“Körper”、意思是“身体”、与物理域（如电场/磁场）是不同的概念．

2) 注意,我们在这里使用的 0 只是一个符号,就像名称 + 和 × 一样
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定義 5（向量空间）在 𝕂 上的向量空间 𝑉、由一个集合 𝑉（其元素称为向量）和一个域 

𝕂（其元素称为标量）、以及以下两个二元映射组成：

(向量加法) + : 𝑉 × 𝑉 → 𝑉
(标量乘法) ⋅ : 𝕂 × 𝑉 → 𝑉

这些运算必须满足以下公理．对于向量 𝒖, 𝒗,𝒘 ∈ 𝑉  和标量 𝑎, 𝑏 ∈ 𝕂、对于向量加法 +

(结合) (𝒖 + 𝒗) + 𝒘 = 𝒖+ (𝒗 +𝒘)
(对易) 𝒖 + 𝒗 = 𝒗 + 𝒖
(有单位元) 存在 𝟎 ∈ 𝑉  使得对所有 𝒗 ∈ 𝑉  有 𝒗 + 𝟎 = 𝒗
(有逆元) 对于每个 𝒗 ∈ 𝑉、存在 𝒘 ∈ 𝑉  使得 𝒗 +𝒘 = 𝟎

换句话说、如果我们重用定义、(𝑉 ,+𝑉 , 𝟎) 是一个阿贝尔群． 而对于标量乘法：

(结合) 𝑎(𝑏𝒗) = (𝑎𝑏)𝒗
(有单位元3)) 1𝒗 = 𝒗
(对向量加法分配) 𝑎(𝒖 + 𝒗) = 𝑎𝒖 + 𝑎𝒗
(对标量加法分配) (𝑎 + 𝑏)𝒗 = 𝑎𝒗 + 𝑏𝒗

如果不引起混淆、⋅ 可以省略、如 𝑎𝒗 ≔ 𝑎 ⋅ 𝒗．注意、这八个公理完全表征了我们所说的向
量空间的含义．如果一个集合 𝑉  及其运算在某个域 𝕂 上满足这些公理、那么我们称它为 

𝕂 上的向量空间．

现在、我们终于可以回答这个问题了、什么是向量？答案很简单但很抽象：向量是向

量空间的一个元素．而向量空间是由上述八个公理定义的．

现在让我们看一些具体的例子、看看这个抽象定义如何应用于熟悉和不太熟悉的

情况．

例 3（座标空间 𝗥𝑛）
最熟悉的例子是

𝗥𝑛 = {(𝑥1, 𝑥2,…, 𝑥𝑛) | 𝑥𝑖 ∈ 𝗥}

在域 𝗥 上．这里：

• 向量加法： (𝑥1,…, 𝑥𝑛) + (𝑦1,…, 𝑦𝑛) = (𝑥1 + 𝑦1,…, 𝑥𝑛 + 𝑦𝑛)
• 标量乘法： 𝑎 ⋅ (𝑥1,…, 𝑥𝑛) = (𝑎𝑥1,…, 𝑎𝑥𝑛)
• 加法单位元： (0, 0,…, 0)
• 加法逆元： (−𝑥1,…,−𝑥𝑛)

你可以验证所有八个公理都得到满足．

3) 其中 1 是 𝕂 中的乘法单位元
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例 4（多项式）

令 𝒫︀𝑛(𝗥) 为所有次数至多为 𝑛 的实系数多项式的集合：

𝒫︀𝑛(𝗥) = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 | 𝑎𝑖 ∈ 𝗥}

这里：

• 向量加法： (𝑎0 + 𝑎1𝑥 + ⋯) + (𝑏0 + 𝑏1𝑥 + ⋯) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + ⋯
• 标量乘法： 𝑐 ⋅ (𝑎0 + 𝑎1𝑥 + ⋯) = (𝑐𝑎0) + (𝑐𝑎1)𝑥 + ⋯
• 加法单位元： 0 = 0 + 0𝑥 + 0𝑥2 +⋯
• 加法逆元： −(𝑎0 + 𝑎1𝑥 + ⋯) = (−𝑎0) + (−𝑎1)𝑥 + ⋯

注意多项式在几何意义上看起来不像“向量”、但仍然满足所有向量空间公理！

例 5（函数）

令 𝕂𝑆 为从非空集合 𝑆 到 𝕂 的所有函数的集合．我们定义 ∀𝑓, 𝑔 ∈ 𝕂𝑆

• 加法： (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)
• 标量乘法： (𝑐 ⋅ 𝑓)(𝑥) = 𝑐 ⋅ 𝑓(𝑥)
• 加法单位元： 常函数 0(𝑥) = 0 对所有 𝑥 ∈ 𝑆
• 加法逆元： (−𝑓)(𝑥) = −𝑓(𝑥)

则 𝕂𝑆 是 𝕂 上的向量空间．

这也构成了 𝕂 上的向量空间． 函数可以被认为是非常抽象意义上的“向量”、其中“分

量”是域中每个点处的函数值．我们可以将这个函数向量空间限制为函数的子集、同时仍

然满足向量空间公理．

例 6（连续函数）

令 𝐶(𝐼) 为定义在区间 𝐼 → 𝕂 上的所有连续函数的集合．结构的定义基本上与 例 5 

中相同、但具有函数在区间 𝐼 上连续的附加性质．

𝐶(𝐼) = {𝑓 ∈ 𝕂𝐼 | (∀𝑥0 ∈ 𝐼) lim𝑥→𝑥0
𝑓(𝑥) = 𝑓(𝑥0)}

根据连续函数的性质、我们知道两个连续函数的和也是连续的、连续函数的标量乘法

也是连续的．所以这个集合也构成了 𝕂 上的向量空间．

此外、令 𝐶1(𝐼) 为所有连续可微函数4) 𝐼 → 𝕂 的集合．结构的定义类似、但具有

函数具有連續一階導數的附加性质．类似地、我们可以将 𝐶𝑛(𝐼) 定义为具有连续导数
直到 𝑛 阶的所有函数的集合．

它们都是 𝕂 上的向量空间．证明留给读者作为练习．

这是我们开始时的例子！

4) 这意味着函数及其导数都是连续的
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例 7（线性微分方程的解）

微分方程

{𝑦 ∈ 𝕂𝐼 | 𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) +⋯+ 𝑎1𝑦′ + 𝑎0𝑦 = 0}

的所有解的集合是 𝕂 上的向量空间．其中 𝑎𝑖 ∈ 𝕂 是已知系数．加法和标量乘法的定

义与 例 5 中相同．

这个向量空间的一些有用性质可以直接从定义（公理）中推导出来．这些性质在使用之前

应该被证明．它们显然是真的、但证明起来相当棘手．

命題 9（唯一的加法单位元）向量空间有唯一的加法单位元．

證 . 假设向量空间 𝑉  中有两个加法单位元 𝟎1 和 𝟎2．那么： 𝟎1 + 𝟎2 = 𝟎1 （根据加法
单位元的定义） 但同时、𝟎2 + 𝟎1 = 𝟎2 （根据相同的定义） 因此、𝟎1 = 𝟎2 （根据加法的
交换律）． ∎

命題 10（唯一的加法逆元）向量空间中的每个元素都有唯一的加法逆元．

證 . 假设 𝑉  是一个向量空间．令 𝒗 ∈ 𝑉．假设 𝒘 和 𝒘′ 是 𝒗 的加法逆元．那么

𝒘 = 𝒘+ 𝟎 = 𝒘+ (𝒗 +𝒘′) = (𝒘 + 𝒗) + 𝒘′ = 𝟎 +𝒘′ = 𝒘′ ∎

根据加法单位元的唯一性、符号 −𝒗 被良好定义为 𝒗 的唯一加法逆元．我们可以将减法运
算定义为 𝒗 −𝒘 = 𝒗 + (−𝒘)．

命題 11 对于每个 𝒗 ∈ 𝑉、0𝒗 = 𝟎

證 . 令 𝒗 ∈ 𝑉．根据标量乘法的定义、我们有： 0𝒗 = (0 + 0)𝒗 = 0𝒗 + 0𝒗 假设 −0𝒗 是 

0𝒗 的加法逆元、使得 0𝒗 + (−0𝒗) = 𝟎． 那么我们有：

𝟎 = 0𝒗 + (−0𝒗) = 0𝒗 + 0𝒗 + (−0𝒗) = 0𝒗 ∎

命題 12 对于每个 𝑎 ∈ 𝕂、𝑎𝟎 = 𝟎．

證 . 令 𝑎 ∈ 𝕂 和 𝟎 ∈ 𝑉  为加法单位元．那么： 𝑎𝟎 = 𝑎(𝟎 + 𝟎) = 𝑎𝟎 + 𝑎𝟎 根据加法单位
元的定义、我们有： 𝑎𝟎 + (−𝑎𝟎) = 𝟎 因此、

𝟎 = 𝑎𝟎 + (−𝑎𝟎) = 𝑎𝟎 + 𝑎𝟎 + (−𝑎𝟎) = 𝑎𝟎 ∎

命題 13 对于每个 𝒗 ∈ 𝑉、(−1)𝒗 = −𝒗．

證 .

14

https://uwni.blog/posts/linear-algebra/index.html
https://uwni.blog/posts/linear-algebra/index.html


U
w
n
i 
煢
鴉

 纂
於

 2
0
2
6
/
0
1
/
1
3
 1

2
:1

7
:1

2
 時
．
本
文

網
枼
．

𝒗 + (−1)𝒗 = 1𝒗 + (−1)𝒗 = (1 + (−1))𝒗 = 0𝒗 = 𝟎

这个等式说明 (−1)𝒗 与 𝒗 相加得到 𝟎．因此 (−1)𝒗 是 𝒗 的加法逆元、如所愿． ∎

3.3 子空间

现在我们理解了向量空间、让我们谈谈子空间．子空间本质上是“向量空间中的向量空间”．

定義 6（子空间）设 𝑉  是 𝕂 上的向量空间．𝑈 ⊆ 𝑉  被称为 𝑉  的子空间、如果 𝑈  與 ⋅|𝑈×𝑈  

和 +|𝕂×𝑈  亦构成 𝕂 上的向量空间．

命題 14 集合 𝑈 ⊆ 𝑉  是 (𝑉 ,𝕂) 的子空间、当且仅当：
(1) 𝟎 ∈ 𝑈
(2) 𝑈  对向量加法封闭： ∀𝒖, 𝒗 ∈ 𝑈,𝒖 + 𝒗 ∈ 𝑈
(3) 𝑈  对标量乘法封闭： ∀𝒗 ∈ 𝑈,∀𝑎 ∈ 𝕂, 𝑎𝒗 ∈ 𝑈

證 . (→) 依定义显然成立

(←) 假设 𝑈  满足上述三条件．(1) 确保 𝑈  非空且有加法单位元 𝟎．(2) 确保 +[𝑈 ×
𝑈] = 𝑈  ．（3）确保 ⋅ [𝕂 × 𝑈] = 𝑈．如果 𝒖 ∈ 𝑈、那么 −𝒖（根据 命題 13 等于 (−1)𝒖）
也在 𝑈  中．因此 𝑈  的每个元素都在 𝑈  中有加法逆元．向量空间定义的其他部分、如结

合律和交换律、对于 𝑈  自动满足、因为它们在更大的空间 𝑉  上成立．因此 𝑈  是一个向

量空间、因此是 𝑉  的子空间． ∎

注意、如果满足这三个条件、那么 𝑊  自动从 𝑉  继承所有向量空间公理、所以 (𝑊,𝐹) 本
身就是一个向量空间．同时、如果 𝑊  是 𝑉  的子集但不满足这些条件、它就不是子空间．

例 8（通过原点的直线）

在 𝗥2 中、任何通过原点的直线都构成一个子空间．例如：

𝑈 = {(𝑥, 𝑦) ∈ 𝗥2 | 𝑦 = 2𝑥} = {(𝑡, 2𝑡) | 𝑡 ∈ 𝗥}

你可以验证：

• (0, 0) ∈ 𝑈
• 如果 (𝑡1, 2𝑡1), (𝑡2, 2𝑡2) ∈ 𝑈、那么 (𝑡1, 2𝑡1) + (𝑡2, 2𝑡2) = (𝑡1 + 𝑡2, 2(𝑡1 + 𝑡2)) ∈ 𝑈
• 如果 (𝑡, 2𝑡) ∈ 𝑈  且 𝑎 ∈ 𝗥、那么 𝑎 ⋅ (𝑡, 2𝑡) = (𝑎𝑡, 2𝑎𝑡) ∈ 𝑈

类似地、𝗥3 中任何通过原点的平面或直线都是子空间．但请注意、那些不通过原点的不是
子空间．

例 9（偶/奇函数）

在向量空间 𝕂𝑆 中、偶/奇函数的集合构成一个子空间．

• 它包含 0(𝑥) = 0 函数．
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• 如果 𝑓(𝑥) 和 𝑔(𝑥) 是偶/奇的、那么 (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) 也是偶/奇的．

• 如果 𝑓(𝑥) 是偶/奇的且 𝑐 ∈ 𝗥、那么 (𝑐𝑓)(𝑥) = 𝑐𝑓(𝑥) 也是偶/奇的．

例 10（连续函数）

区间 𝐼 上所有连续函数的集合 𝐶(𝐼) 构成所有函数的向量空间 𝕂𝐼 的子空间．
• 常值函数 0(𝑥) = 0 在 𝐶(𝐼) 中
• 如果 𝑓, 𝑔 ∈ 𝐶(𝐼)、那么 (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) 也是连续的、所以 𝑓 + 𝑔 ∈ 𝐶(𝐼)
• 如果 𝑓 ∈ 𝐶(𝐼) 且 𝑐 ∈ 𝗥、那么 (𝑐𝑓)(𝑥) = 𝑐𝑓(𝑥) 也是连续的、所以 𝑐𝑓 ∈ 𝐶(𝐼)

例 11（齐次线性微分方程的解）

例 7 中线性齐次微分方程的所有解的集合构成函数向量空间的子空间．

• 零函数是一个解（平凡解）．

• 如果 𝑦1 和 𝑦2 是解、那么 (𝑦1 + 𝑦2)(𝑥) = 𝑦1(𝑥) + 𝑦2(𝑥) 也是解．
• 如果 𝑦 是解且 𝑐 ∈ 𝗥、那么 (𝑐𝑦)(𝑥) = 𝑐𝑦(𝑥) 也是解．

3.4 子空间的和

现在让我们谈谈两个子空间的和．给定向量空间 𝑉  的两个子空间 𝑈  和 𝑊、它们的和、记
为 𝑈 +𝑊、定义为：

定義 7（子空间的和）向量空间 𝑉  的两个子空间 𝑈  和 𝑊  的和是集合：

𝑈 +𝑊 = {𝒖 +𝒘 | 𝒖 ∈ 𝑈,𝒘 ∈ 𝑊}

但请注意 𝑈 ∪𝑊  与 𝑈 +𝑊  不同．和 𝑈 +𝑊  本身是一个向量空间、它包含 𝑈  和 𝑊  中

向量的所有可能和、而 𝑈 ∪𝑊  只是组合两个子空间的元素、所以它不一定是向量空间．

例 12

假设 𝑈  是 𝗥2 中形式为 (𝑥, 0) 的所有向量的子空间、而 𝑊  是形式为 (0, 𝑦) 的所有向
量的子空间．那么：

𝑈 +𝑊 = {(𝑥, 𝑦) | 𝑥 ∈ 𝗥, 𝑦 ∈ 𝗥} = 𝗥2

构成 𝗥2 平面、而 𝑈 ∪𝑊 = {(𝑥, 0) | 𝑥 ∈ 𝗥} ∪ {(0, 𝑦) | 𝑦 ∈ 𝗥} 只是 𝑥 轴和 𝑦 轴的并
集、这不是向量空间．

命題 15（子空间的和是包含它们的最小子空间）𝑉  的子空间 𝑉1,…, 𝑉𝑚 的和 𝑉1 +⋯+
𝑉𝑚 是包含 𝑉1,…, 𝑉𝑚 中每一个的 𝑉  的最小子空间．
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證 . 读者可以验证 𝑉1 +⋯+ 𝑉𝑚 包含加法单位元 𝟎 并且对加法和标量乘法封闭．因此它
是 𝑉  的子空间．

子空间 𝑉1,…, 𝑉𝑚 都包含在 𝑉1 +⋯+ 𝑉𝑚 中（要看到这一点、考虑和 𝒗1 +⋯+ 𝒗𝑚、其
中除了一个 𝒗𝑘 之外的所有都是 𝟎）．相反、包含 𝑉1,…, 𝑉𝑚 的 𝑉  的每个子空间都包含 𝑉1 +
⋯+ 𝑉𝑚（因为子空间必须包含其元素的所有有限和）．因此 𝑉1 +⋯+ 𝑉𝑚 是包含 𝑉1,…, 𝑉𝑚 

的 𝑉  的最小子空间． ∎

3.5 線形組合

设 𝑉  的非空子集 𝑆、對於 𝒗𝑖 ∈ 𝑆、𝑎𝑖 ∈ 𝕂、稱式

𝑎1𝒗1 +⋯+ 𝑎𝑛𝒗𝑛

為 𝑆 的线性组合．其中 𝑎𝑖 稱為係數、如果係數全為 0、則稱平凡、 根据向量的加法和标

量乘法、线性组合本身也是 𝑉  的一个元素． 考慮方程

𝑎1𝒗1 +⋯+ 𝑎𝑛𝒗𝑛 = 𝟎

若存在非平凡線形組合滿足方程、則稱 𝑆 線形相關．否則稱線形獨立．

命題 16 含 𝟎 的集合必线性相关．

證 . 顯然． ∎

𝑆 所有線形組合之集合記作

span𝑆 ≔ {∑
𝑛

𝑖=1
𝑎𝑖𝒗𝑖 | 𝑎𝑖 ∈ 𝕂, 𝒗𝑖 ∈ 𝑆}

稱 𝑆 為 span𝑆 的張集．又稱 𝑆 張成 span𝑆．至於有序的元组 (𝒗𝑖)、以加法的交换性、其
线性组合的值与其顺序无关、是故定义 span(𝒗𝑖) ≔ span{𝒗𝑖}．

命題 17 span𝑆 是 𝑉  於 𝕂 之子空間．

證 . 我們需要驗證 𝑆 滿足子空間的三個條件：

(1) 𝟎 ∈ 𝑆：因為 ∀𝑎𝑖 = 0、𝟎 = 0 ⋅ 𝒗1 +⋯+ 0 ⋅ 𝒗𝑛 ∈ 𝑆．
(2) 對於任意 𝒖, 𝒗 ∈ 𝑆、有 𝒖 + 𝒗 ∈ 𝑆：因為 𝒖 和 𝒗 都是 𝑆 的線形組合、所以它們的和

也是 𝑆 的線形組合、因此 𝒖 + 𝒗 ∈ 𝑆．
(3) 對於任意 𝒗 ∈ 𝑆 和 𝑎 ∈ 𝕂、有 𝑎𝒗 ∈ 𝑆：因為 𝒗 是 𝑆 的線形組合、所以 𝑎𝒗 也是 𝑆 的

線形組合、因此 𝑎𝒗 ∈ 𝑆．

因此、span𝑆 是 𝑉  的子空間．稱為 𝑆 的張空間． ∎

同一个向量可以有不同的线性组合表示．现在思考如下的线性组合：

1𝒙 + 0𝒚 + 3𝒛

3𝒙 + 3𝒛 − 2𝒙
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他们自然是同一个向量、但是同一个线性组合吗？从字符串的角度来看他们显然不同．但

通过简单化简都能化成同一个线性组合．再来考虑如果 𝒚 = 𝒙 + 𝒛、那么同一个向量亦能
用 0𝒙 + 1𝒚 + 2𝒛 表示．但这个线性组合无法直接化简成 𝒙 + 3𝒛、与前两个显然不同．为
了避免混淆这种縱使同一个向量的线性组合因为插入 0 项、拆项等造成的字符串排列不同

而实际上相同的情况、我们引入下面的定义．

如果 𝑉 ∋ 𝒗 可以唯一地表示為 𝑆 的線形組合

𝒗 = 𝑎1𝒗1 +⋯+ 𝑎𝑘𝒗𝑘

其中 𝑖 ≠ 𝑗 → 𝒗𝑖 ≠ 𝒗𝑗、𝑎𝑖 ≠ 0．则称之为本質唯一的线性组合．

命題 18（线性无关的充要条件）向量集 𝑆 ≠ {𝟎} ．以下三命题等价：
(1) 𝑆 线性无关．

(2) span𝑆 中非零向量皆是 𝑆 的本質唯一线性组合．

(3) 𝑆 中任一向量皆非其余向量的线性组合．

證 . (1 → 2)

𝟎 ≠ 𝑎1𝒔1 +⋯+ 𝑎𝑛𝒔𝑛 = 𝑏1𝒕1 +⋯+ 𝑏𝑚𝒕𝑚

其中各项系数皆非零、且向量皆不同．现在等号两端相减并合并同类项、得到

𝟎 = (𝑎𝑖1 − 𝑏𝑗1)𝒔𝑖1 +⋯+ (𝑎𝑖𝑘 − 𝑏𝑗𝑘)𝒔𝑖𝑘
+ 𝑎𝑖𝑘+1𝒔𝑖𝑘+1 +⋯+ 𝑎𝑖𝑛𝒔𝑖𝑛
− 𝑏𝑗𝑘+1𝒕𝑗𝑘+1 −⋯− 𝑏𝑗𝑚𝒕𝑗𝑚

由于 (1) 成立、得知所有系数均为零、从而只有第一行的同类项、𝑛 = 𝑚 = 𝑘 并且 𝑎𝑖𝑙 =
𝑏𝑗𝑙、𝒔𝑖𝑙 = 𝒕𝑗𝑙 对所有 𝑙 = 1,…, 𝑘 成立．

(2 → 3) 使用反證法．假設 𝑆 = {𝒔} ⊔ {𝒔1,…, 𝒔𝑛} 而

𝒔 = 𝑎1𝒔1 +⋯+ 𝑎𝑛𝒔𝑛

合並同類項後、因還可以線形組合爲 𝒔 = 1𝒔、必然牴觸於 (2) 而得證．

(3 → 1) 使用反證法．假設 𝑆 = {𝒔1,…, 𝒔𝑛} 線形相關、方程

𝟎 = 𝑎1𝒔1 +⋯+ 𝑎𝑛𝒔𝑛

有非凡解、∃𝑎𝑘 ≠ 0

𝒔𝑘 = −
1
𝑎𝑘
(𝑎1𝒔1 +⋯+ 𝑎𝑘−1𝒔𝑘−1 + 𝑎𝑘+1𝒔𝑘+1 +⋯+ 𝑎𝑛𝒔𝑛)

與 (3) 矛盾而得證． ∎
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命題 19（Steinitz 交換引理）向 量 空 间  𝑉  中 、 向 量 集  {𝒍1,…, 𝒍𝑛} 线 性 无
关、集  {𝒔1,…, 𝒔𝑚} 张成  𝑉．然則存在  1 ≤ 𝑖𝑛+1 < ⋯ < 𝑖𝑚 ≤ 𝑚、而集合  

{𝒍1,…, 𝒍𝑛, 𝒔𝑖𝑛+1 ,…, 𝒔𝑖𝑚} 張成 𝑉．

證 . 當 𝑛 = 0 時、顯然成立． 我們對 𝑛 使用數學歸納法．假設對於 𝑛 − 1 成立、即 

{𝒍1,…, 𝒍𝑛−1, 𝒔𝑖𝑛 ,…, 𝒔𝑖𝑚} 張成 𝑉．現在考慮 𝑛． {𝒍1,…, 𝒍𝑛} 线性独立、𝒍𝑛 非零、故能表示
為 𝒍1,…, 𝒍𝑛−1, 𝒔𝑖𝑛 ,…, 𝒔𝑖𝑚 的非平凡線形組合

𝒍𝑛 = 𝑎1𝒍1 +⋯+ 𝑎𝑛−1𝒍𝑛−1 + 𝑎𝑛𝒔𝑖𝑛 +⋯+ 𝑎𝑚𝒔𝑖𝑚

存在 𝑘 ∈ [𝑛,𝑚], 𝑎𝑘 ≠ 0．否则上式只余 𝒍1,…, 𝒍𝑛 诸项、与其线性独立性矛盾．

從而

𝒔𝑖𝑘 =
1
𝑎𝑘
(𝒍𝑛 − 𝑎1𝒍1 −⋯− 𝑎𝑛−1𝒍𝑛−1 −⋯− 𝑎𝑘−1𝒔𝑖𝑘−1 − 𝑎𝑘+1𝒔𝑖𝑘+1 −⋯)

因爲任何向量 𝒗 ∈ 𝑉  可表示為 𝒍1,…, 𝒍𝑛, 𝒔𝑖′𝑛+1 ,…, 𝒔𝑖′𝑚 的線形組合:

𝒗 = 𝑏1𝒍1 +⋯+ 𝑏𝑛−1𝒍𝑛−1 + 𝑏𝑛𝒔𝑖𝑛 +⋯+ 𝑏𝑘𝒔𝑖𝑘 +⋯+ 𝑏𝑚𝒔𝑖𝑚
= 𝑏1𝒍1 +⋯+ 𝑏𝑛−1𝒍𝑛−1 + 𝑏𝑛𝒔𝑖𝑛 +⋯

+ 𝑏𝑘
𝑎𝑘
(𝒍𝑛 − 𝑎1𝒍1 −⋯− 𝑎𝑛−1𝒍𝑛−1 −⋯− 𝑎𝑘−1𝒔𝑖𝑘−1 − 𝑎𝑘+1𝒔𝑖𝑘+1 −⋯)

+⋯+ 𝑏𝑚𝒔𝑖𝑚

= (𝑏1 − 𝑎1
𝑏𝑘
𝑎𝑘
)𝒍1 +⋯+(𝑏𝑛−1 − 𝑎𝑛−1

𝑏𝑘
𝑎𝑘
)𝒍𝑛−1 +

𝑏𝑘
𝑎𝑘
𝒍𝑛

+(𝑏𝑛 − 𝑎𝑛
𝑏𝑘
𝑎𝑘
)𝒔𝑖𝑛 +⋯+(𝑏𝑘−1 − 𝑎𝑘−1

𝑏𝑘
𝑎𝑘
)𝒔𝑖𝑘−1

+(𝑏𝑘+1 − 𝑎𝑘+1
𝑏𝑘
𝑎𝑘
)𝒔𝑖𝑘+1 +⋯+(𝑏𝑚 − 𝑎𝑚

𝑏𝑘
𝑎𝑘
)𝒔𝑖𝑚

其中索引重排列为

𝑖′𝑙 = {
𝑖𝑙−1 if 𝑙 ≤ 𝑘
𝑖𝑙 if 𝑙 > 𝑘

于是、尋得 1 ≤ 𝑖′𝑛+1 < ⋯ < 𝑖′𝑚 ≤ 𝑚 从而 span{𝒍1,…, 𝒍𝑛, 𝒔𝑖′𝑛+1 ,…, 𝒔𝑖′𝑚} = 𝑉、命題於 𝑛 成
立． ∎

命題 20（推論 1）向量集 𝐿 线性无关、集 𝑆 张成 𝑉．然則 |𝐿| ≤ |𝑆|．

3.6 基

向量集 𝐵 稱為向量空間 (𝑉 ,𝕂) 的基集、簡稱基、若
(1) 𝐵 張成 𝑉；
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(2) 𝐵 線形無關．

命題 21（推論 2）𝑉  有有限張集、𝐵1, 𝐵2 为基、则 |𝐵1| = |𝐵2|．

證 . 由於 𝐵1 張成 𝑉、而 𝐵2 線形無關、依命題 19 知 |𝐵2| ≤ |𝐵1|．同理、𝐵2 張成 𝑉、
而 𝐵1 線形無關、亦可得 |𝐵1| ≤ |𝐵2|．綜合兩不等式、遂得 |𝐵1| = |𝐵2|． ∎

因此、向量空間之基也勢皆相等、稱為維度．𝑉  的維度記爲 dim𝑉．

命題 22（基的性质）𝑉  是線形空間、然則下列命题等价:

(1) 𝐵 是 𝑉  的基．

(2) 𝑉  所有非零向量皆是 𝐵 的本質唯一线性组合．

(3) 𝐵 是 𝑉  的最小張集．

(4) 𝐵 是 𝑉  的最大綫性無關集．

證 . (1 ↔ 2) 由命題 18 (2) 知、命题成立．

(1 → 3) 根据定义、我们知道 𝐵 是 𝑉  的張集、然後我們來證明、他是最小的．

∎

命題 23 𝑉  是非 {𝟎} 向量空間．𝐿 是 𝑉  中的線形無關集、𝑆 是 𝑉  的張集．𝐿 ⊆ 𝑆．
則有基 𝐵、使得 𝐿 ⊆ 𝐵 ⊆ 𝑆．即
(1) 任何非 {𝟎} 向量空間有基．
(2) 任何綫性無關集皆含於某基中．

(3) 任何張集皆含有某基．

命題 24 𝑉  是有限维綫性空間、𝑆 是向量集合、|𝑆| = dim𝑉．若 𝑆 張成 𝑉、則 𝑆 線

形獨立、反之亦然．

證 . 由命題 23 得知、存在基 𝐵、使得 𝐵 ⊆ 𝑆．因 |𝑆 ∖ 𝐵| = |𝑆| − |𝐵| = 0

𝑆 = 𝐵 ⊔ (𝑆 ∖ 𝐵) = 𝐵 ∪ ∅ = 𝐵 ∎

3.7 線形映射

我們定義線形映射爲綫性空間間的同態（即保持加法和純量乘法）．而線形算子則是自同

構．其他課本中或稱線形算子爲線形變換．或稱線形映射爲線形變換．爲了避免混淆、我

們棄之不用．

設 (𝑉 ,𝕂) 與 (𝑊,𝕂) 爲 𝕂 上的綫性空間．映射 𝑇 : 𝑉 → 𝑊  稱爲從 𝑉  到 𝑊  的線形

映射、或者說 𝑉  到 𝑊  的線形同態、若對任意 𝒖, 𝒗 ∈ 𝑉  與 𝑎 ∈ 𝕂、皆有
• 𝑇 (𝒖 + 𝒗) = 𝑇(𝒖) + 𝑇(𝒗)
• 𝑇 (𝑎𝒗) = 𝑎𝑇 (𝒗)
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將所有的線形映射從 𝑉  到 𝑊  的集合記作 ℒ︀(𝑉 ,𝑊)． 如果 𝑉 = 𝑊、則稱爲 𝑉  上的線形

算子、或曰 𝑉  上的自同態．𝑉  上線形算子的集合記作 ℒ︀(𝑉 )．

將 ℒ︀(𝑉 ,𝕂) 中的線形映射稱爲 𝑉  上的線形泛函．並且可以記該線形空間爲 𝑉 ∗、稱爲 

𝑉  的對偶空間．

命題 25 線形映射 𝑇 ∈ ℒ︀(𝑉 ,𝑊) 滿足 𝑇 (𝟎𝑉 ) = 𝟎𝑊、其中 𝟎𝑉  与 𝟎𝑊  分別爲 𝑉  與 

𝑊  的加法單位元．

證 . 由於 𝟎𝑉 + 𝟎𝑉 = 𝟎𝑉、故

𝑇 (𝟎𝑉 ) = 𝑇 (𝟎𝑉 + 𝟎𝑉 ) = 𝑇 (𝟎𝑉 ) + 𝑇 (𝟎𝑉 )

因此、𝑇 (𝟎𝑉 ) 是 𝑊  中 𝑇 (𝟎𝑉 ) 的加法單位元．由於加法單位元唯一、遂得 𝑇 (𝟎𝑉 ) = 𝟎𝑊．∎

命題 26 𝑇 ∈ ℒ︀(𝑉 ,𝑊)、則 ker 𝑇 ≔ {𝒙 ∈ 𝑉 | 𝑇𝒙 = 𝟎𝑊} 是 𝑉  的子空間．

證 . 我們來證明它是 𝑉  的子空間．

(1) 顯然 𝟎𝑉 ∈ ker 𝑇． 因為 𝑇 (𝟎𝑉 ) = 𝟎𝑊．

(2) 若 𝒖, 𝒗 ∈ ker 𝑇、則 𝑇𝒖 = 𝟎𝑊  且 𝑇𝒗 = 𝟎𝑊．因此

𝑇 (𝒖 + 𝒗) = 𝑇𝒖 + 𝑇𝒗 = 𝟎𝑊 + 𝟎𝑊 = 𝟎𝑊

故 𝒖 + 𝒗 ∈ ker 𝑇．

(3) 若 𝒗 ∈ ker 𝑇  且 𝑎 ∈ 𝕂、則 𝑇 (𝑎𝒗) = 𝑎𝑇𝒗 = 𝑎𝟎𝑊 = 𝟎𝑊． ∎

我們稱綫性空間 ker 𝑇  為 𝑇  的核空間或零空间．

3.8 不變子空間

設 (𝑉 ,𝕂) 爲綫性空間、𝑇 ∈ ℒ︀(𝑉 )．子空間 𝑈 ⊆ 𝑉  稱爲 𝑇 -不變、若對任意 𝒖 ∈ 𝑈、皆有 

𝑇𝒖 ∈ 𝑈．換言之、𝑇  在 𝑈  上封閉、𝑇 |𝑈 ∈ ℒ︀(𝑈)．

例 13

以下幾個是不變子空間

• {𝟎} – 因爲 𝑇 (𝟎) = 𝟎．
• 𝑉  – 因爲 𝑉  是自身的子空間．

• ker 𝑇  – 因爲對任意 𝒖 ∈ ker 𝑇、𝑇𝒖 = 𝟎 ∈ ker 𝑇．
• im𝑇  – 因爲對任意 𝒗 ∈ im𝑇 ⊆ 𝑉、𝑇𝒗 ∈ im𝑇．

現在考慮一維不變子空間、設 𝑈  是 𝒗 ∈ 𝑉  張成的一維子空間．即

𝑈 = {𝜆𝒗 | 𝜆 ∈ 𝕂} = span{𝒗}

如果 𝑈  是 𝑇 -不變的、則對任意 𝒖 ∈ 𝑈、𝑇𝒖 ∈ 𝑈  即 ∃𝜆 ∈ 𝕂 使得

𝑇𝒖 = 𝜆𝒖
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