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1 論集合【稿】

閱讀本文需備初等數學基礎．

1.1 ZFC 公理

若夫集合者、聚同屬之物也．

命題 1（内涵公理）設 𝜑 爲一元謂辭

∃𝐴∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑(𝑥))

然則、適 𝜑 者皆見於 𝐴、𝐴 之所有悉適 𝜑 也．記

𝐴 = {𝑥 | 𝜑(𝑥)}

查察下例

例 1（Russell 悖論）

設

𝑋 = {集合未嘗言及於本文者}

則 𝑋 ∉ 𝑋、無己之集也．依內涵公理可聚此屬以爲一集

𝐴 = {𝑥 | 𝑥 ∉ 𝑥}

則此集有己乎？ 𝐴 ∈ 𝐴 ↔ 𝐴 ∉ 𝐴、謬．故知

∄𝐴∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∉ 𝑥).

乖乎內涵公理也．

是以内涵公理宜畧爲限．

命題 2（分離公理模式）設 𝜑 爲一元謂辭

∀𝐴∃𝐵∀𝑢(𝑢 ∈ 𝐵 ↔ 𝑢 ∈ 𝐴 ∧ 𝜑(𝑢))

內涵公理許擬集以任意謂詞、致生悖論．而依分離公理則止得分自既有之母集 𝐵 也．設 

𝜑(𝑢) ≔ 𝑢 ∉ 𝑢 如前、凡集合 𝐴、子集 𝑅𝐴 = {𝑥 ∈ 𝐴 | 𝑥 ∉ 𝑥} 集也．以排中律或 𝑅𝐴 ∈ 𝑅𝐴 

或 𝑅𝐴 ∉ 𝑅𝐴．代入分離公理得：𝑅𝐴 ∈ 𝑅𝐴 ↔ (𝑅𝐴 ∈ 𝐴 ∧ 𝑅𝐴 ∉ 𝑅𝐴)、𝑅𝐴 ∈ 𝑅𝐴 則 𝑅𝐴 ∉
𝑅𝐴、此似舛而非；𝑅𝐴 ∉ 𝐴 故也．如是、凡集合常有子集之外乎己者、所以莫有万全之集

合也．(Zermelo 1908)

命題 3（外延公理）
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∀𝐴∀𝐵(𝐴 = 𝐵 ↔ (∀𝑥, 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵))

外延公理謂集之相等以其元之相等爲準．

1.1.1 集合代數

設 𝐴、𝐵 皆集也．納 𝐴 及 𝐵 之所有爲一集、曰 𝐴 與 𝐵 之并集、記 𝐴 ∪ 𝐵．

𝐴 ∪ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

擇 𝐴 及 𝐵 之共有爲一集、曰 𝐴 與 𝐵 之交集、記 𝐴 ∩ 𝐵．

𝐴 ∩ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

𝐴 之所有之不見於 𝐵 者、曰 𝐴 與 𝐵 之差集、記 𝐴 ∖ 𝐵．

𝐴 ∖ 𝐵 = {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}

1.1.2 子集與空集

設 𝐴 集也．若分 𝐴 爲一新集 𝐵、曰 𝐴 之子集、記 𝐵 ⊆ 𝐴．然則凡 𝑏 ∈ 𝐵 者悉見於 𝐴．

𝐵 ⊆ 𝐴 ≔ (∀𝑏 ∈ 𝐵)𝑏 ∈ 𝐴

若 𝐵 ⊆ 𝐴 且 𝐵 = 𝐴、則曰 𝐵 爲 𝐴 之真子集、記 𝐵 ⊂ 𝐴．

集合無所有者曰空集、简曰空、記 ∅、又 {}．凡集、∅ 皆其子集也．

證 . 使 𝐴 爲集．欲證 ∅ ⊆ 𝐴、證 ∀𝑥(𝑥 ∈ ∅ → 𝑥 ∈ 𝐴) 而已．蓋 ∅ 無元、故前項爲假而

命題空真矣． ∎

1.1.3 集族

集合之集曰集族． 凡集合 𝑆 之子悉聚以爲族、謂之冪集、記 𝒫︀(𝑆) ≔ {𝑥 | 𝑥 ⊆ 𝑆}．譬若 

𝒫︀{1, 2} = {{}, {1}, {2}, {1, 2}}． 𝑆 子集之族名曰子集族．𝒫︀(𝑆) 之子集也．

ℱ︀ 集族也．

⋃ ℱ︀ ≔ ⋃
𝐹∈ℱ︀

𝐹 ≔ {𝑥 | (∃𝐹 ∈ ℱ︀)𝑥 ∈ 𝐹}

名曰 ℱ︀ 之泛並．ℱ︀ 非空1)則謂

⋂ ℱ︀ ≔ ⋂
𝐹∈ℱ︀

𝐹 ≔ {𝑥 | (∀𝐹 ∈ ℱ︀)𝑥 ∈ 𝐹}

曰 ℱ︀ 之泛交．且較然易見

⋃{𝐴, 𝐵} = 𝐴 ∪ 𝐵

⋂{𝐴, 𝐵} = 𝐴 ∩ 𝐵

若 ∀𝐴, 𝐵 ∈ ℱ︀, 𝐴 ≠ 𝐵 → 𝐴 ∩ 𝐵 = ∅ 則記 ⋃ ℱ︀ 爲 ⨆ ℱ︀．曰不交並．

1) 莫有万全之集合故也
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設 ℱ︀ ⊆ 𝒫︀(𝑋)、∅ ∉ ℱ︀、𝑋 之非空子集族也．

⨆ ℱ︀ = 𝑋

則曰 ℱ︀ 爲 𝑋 之劃分．

1.1.4 元組與直積

夫有序對者、又名二元組、記 (𝑎, 𝑏)．所謂 (Kuratowski 1921) 如下

(𝑎, 𝑏) ≔ {{𝑎}, {𝑎, 𝑏}}

遂

• (𝑏, 𝑎) = {{𝑏}, {𝑏, 𝑎}} ≠ (𝑎, 𝑏)
• (𝑎, 𝑎) = {{𝑎}, {𝑎, 𝑎}} = {{𝑎}, {𝑎}} = {{𝑎}} ≠ {𝑎} = (𝑎)

𝜋1(𝑎, 𝑏) ≔ 𝑎 謂之第一影映、𝜋2(𝑎, 𝑏) ≔ 𝑏 謂之第二影映．

命題 4 (𝑎1, 𝑏1) = (𝑎2, 𝑏2) ↔ 𝑎1 = 𝑎2 ∧ 𝑏1 = 𝑏2

證 .

• (←) 較然可見．

• (→) 𝑎1 = 𝑏1 則

{{𝑎2}, {𝑎2, 𝑏2}} = (𝑎2, 𝑏2) = (𝑎1, 𝑏1) = {{𝑎1}}

遂可見 {𝑎2} = {𝑎2, 𝑏2} = {𝑎1} → 𝑎2 = 𝑏2 = 𝑎1 = 𝑏1．

不然、𝑎1 ≠ 𝑏1 則

{{𝑎2}, {𝑎2, 𝑏2}} = (𝑎2, 𝑏2) = (𝑎1, 𝑏1) = {{𝑎1}, {𝑎1, 𝑏1}}

等式右側集合有二元、左側亦宜然．遂 𝑎2 ≠ 𝑏2．而 {𝑎2} = {𝑎1}, {𝑎2, 𝑏2} = {𝑎1, 𝑏1} 可知

矣．於是 𝑎2 = 𝑎1 且 𝑏2 = 𝑏1． ∎

若夫 𝑎 所有于 𝐴、𝑏 所有于 𝐵 者、遍聚二元組之集合謂之 𝐴 與 𝐵 之直積、記 𝐴 × 𝐵． 

所謂如下

𝐴 × 𝐵 ≔ {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}

例 2（六十甲子）

記稱大桡作甲子、隸首作數．二者既立、以比日表、以管万事．天地二甲子、十干十

二支．數從甲子始、子母相求．十日十二辰、周六十日．設

干 = {甲,乙,丙,丁,戊,己,庚,辛,壬,癸}

支 = {子,丑,寅,卯,辰,巳,午,未,申,酉,戌,亥}

請問 干×支 者六十甲子乎？非也．如「甲丑」弗在其中．干支相繼而得六十甲子故也．
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𝐴 × 𝐴 得記爲  𝐴2．至於三元組、可謂之以  (𝑎1, 𝑎2, 𝑎3) ≔ ((𝑎1, 𝑎2), 𝑎3)、四元組  

(𝑎1, 𝑎2, 𝑎3, 𝑎4) ≔ ((𝑎1, 𝑎2, 𝑎3), 𝑎4) 謂之如前、准此及 𝑛 元組、得遞歸謂之

(𝑎1, …, 𝑎𝑛) ≔ ((𝑎1, …, 𝑎𝑛−1), 𝑎𝑛)

而有 𝑛 維直積謂之如下

𝐴1 × ⋯ × 𝐴𝑛 ≔ {(𝑎1, …, 𝑎𝑛) | ⋀
1≤𝑖≤𝑛

𝑎𝑖 ∈ 𝐴𝑖}

𝐴𝑛 ≔ 𝐴𝑛−1 × 𝐴

1.2 關係

集合 𝑅 ⊆ 𝐴 × 𝐵 者、謂之 𝐴 與 𝐵 上之二元關係、畧以關係．若 𝐴 = 𝐵 即 𝑅 ⊆ 𝐴2 則曰 

𝐴 上之關係．(𝑎, 𝑏) ∈ 𝑅 則曰 (𝑎, 𝑏) 適 𝑅．以中綴表達式記曰 𝑎𝑅𝑏、亦可記以前綴式並輔
以括弧讀號、曰 𝑅(𝑎, 𝑏)．
• 謂 𝑅 之定義域者

dom 𝑅 ≔ {𝑎 | ∃𝑏𝑅(𝑎, 𝑏)}

• 謂 𝑅 之像域者

i𝑅 ≔ {𝑏 | ∃𝑎𝑅(𝑎, 𝑏)}

• 謂 𝑅 之逆關係者

𝑅−1 ≔ {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ 𝑅}

則可得而見 dom 𝑅−1 = i𝑅 及 i𝑅−1 = dom 𝑅．
• 謂二元關係 𝑆 與 𝑅 之複合者

𝑆 ∘ 𝑅 ≔ {(𝑎, 𝑐) | ∃𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝑆 ∧ (𝑏, 𝑐) ∈ 𝑅}

例 3

大學校內、設 𝐴 爲生集、𝐵 爲課程、𝐶 爲師集．則 𝑆 ⊆ 𝐴 × 𝐵 爲學生受業關係、𝑅 ⊆
𝐵 × 𝐶 爲教師受業關係．然則 𝑆 ∘ 𝑅 爲師生關係也．某生與某師有師生關係、則有某

課師授而生受也．

命題 5（複合關係之結合律）使 𝑅 ⊆ 𝐴 × 𝐵、𝑆 ⊆ 𝐵 × 𝐶、𝑇 ⊆ 𝐶 × 𝐷．則

𝑇 ∘ (𝑆 ∘ 𝑅) = (𝑇 ∘ 𝑆) ∘ 𝑅

證 . 以示 𝑇 ∘ (𝑆 ∘ 𝑅) ⊆ (𝑇 ∘ 𝑆) ∘ 𝑅、凡 (𝑎, 𝑑) ∈ 𝑇 ∘ (𝑆 ∘ 𝑅) 者、∃𝑐 ∈ 𝐶

(𝑎, 𝑐) ∈ 𝑆 ∘ 𝑅 ∧ (𝑐, 𝑑) ∈ 𝑇

(𝑎, 𝑐) ∈ 𝑆 ∘ 𝑅 是以 ∃𝑏 ∈ 𝐵

(𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑆
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以 (𝑏, 𝑐) ∈ 𝑆 ∧ (𝑐, 𝑑) ∈ 𝑇、 知 (𝑏, 𝑑) ∈ 𝑇 ∘ 𝑆．又以 (𝑎, 𝑏) ∈ 𝑅 知 (𝑎, 𝑑) ∈ (𝑇 ∘ 𝑆) ∘ 𝑅．

反則可證 𝑇 ∘ (𝑆 ∘ 𝑅) ⊇ (𝑇 ∘ 𝑆) ∘ 𝑅． ∎

1.2.1 相若關係

設 ∼ 爲集 𝑆 上之二元關係．適三性如下列者謂 𝑆 上之相若關係：

• 自反性： (∀𝑠 ∈ 𝑆)𝑠 ∼ 𝑠
• 對稱性： (∀𝑠, 𝑡 ∈ 𝑆)𝑠 ∼ 𝑡 → 𝑡 ∼ 𝑠
• 傳遞性： (∀𝑠, 𝑡, 𝑢 ∈ 𝑆)𝑠 ∼ 𝑡 ∧ 𝑡 ∼ 𝑢 → 𝑠 ∼ 𝑢

設 ∼ 爲 𝑆 上之相若關係、凡 𝑠 ∈ 𝑆、集合 [𝑠]∼ ≔ {𝑡 ∈ 𝑆 | 𝑠 ∼ 𝑡} 名曰 𝑠 之相若類．𝑆 之

相若類族曰商集、記 𝑆/∼ ≔ {[𝑠]∼ | 𝑠 ∈ 𝑆}．

命題 6 ∼ 爲相若關係之於 𝑆．則商集 𝑆/∼ 爲 𝑆 之劃分．

證 . 設 𝒮︀ ≔ 𝑆/∼．將欲證 𝒮︀ 爲 𝑆 之劃分、證以

(1) 曰 ∀𝑋 ∈ 𝒮︀, 𝑋 ≠ ∅：設 𝑋 ∈ 𝒮︀、則有 𝑠 ∈ 𝑆 使 𝑋 = [𝑠]∼．以 𝑠 ∼ 𝑠、知 𝑠 ∈ [𝑠]∼、故 

𝑋 ≠ ∅．

(2) 曰 ⋃ 𝒮︀ = 𝑆：設 𝑠 ∈ 𝑆．以 𝑠 ∼ 𝑠、知 𝑠 ∈ [𝑠]∼．以 [𝑠]∼ ∈ 𝒮︀、知 𝑠 ∈ ⋃ 𝒮︀．反之、設 𝑠 ∈
⋃ 𝒮︀、則有 𝑋 ∈ 𝒮︀ 使 𝑠 ∈ 𝑋．以 𝑋 爲某相若類．故 𝑠 ∈ 𝑆．

(3) 曰 ∀𝑋, 𝑌 ∈ 𝒮︀, 𝑋 ≠ 𝑌 → 𝑋 ∩ 𝑌 = ∅：證其逆否．假令 𝑋 ∩ 𝑌 ≠ ∅、則有 𝑢 ∈ 𝑆 使 𝑢 ∈
𝑋 且 𝑢 ∈ 𝑌．且 ∀𝑥 ∈ 𝑋∀𝑦 ∈ 𝑌、𝑥 ∼ 𝑢 ∼ 𝑦、故而 𝑥 ∈ 𝑌  且 𝑦 ∈ 𝑋．是以 𝑋 = 𝑌．∎

命題 7 設 𝒮︀ 爲 𝑆 之劃分．有二元關係

∼𝒮︀ = {(𝑥, 𝑦) ∈ 𝑆2 | ∃𝐴 ∈ 𝒮︀, 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴}

則

(1) ∼𝒮︀ 爲相若關係．且 𝑆/∼𝒮︀ = 𝒮︀
(2) 若 ∼ 爲相若關係且 𝑆/∼ = 𝒮︀、則 ∼ = ∼𝒮︀．

證 . ∎

是以二元關係與劃分一一對應也

1.2.2 恆等關係

記 𝑆 上之恆等關係曰 id𝑆

id𝑆 ≔ {(𝑠, 𝑠) | 𝑠 ∈ 𝑆}

若 𝑆 = {♣︎, ♦︎, ♥︎}、id𝑆 = {(♣︎, ♣︎), (♦︎, ♦︎), (♥︎, ♥︎)}

恆等關係者、相若關係之最小者也．

命題 8 使 𝑅 ⊆ 𝐴 × 𝐵 爲二元關係．則 𝑅 ∘ 𝑅−1 = id𝐵
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證 .

∎

1.2.3 序關係

(𝑆, ⪯) 設以爲結構之並以關係者、並有
• 自反性： (∀𝑠 ∈ 𝑆)𝑠 ⪯ 𝑠
• 反對稱性： (∀𝑠, 𝑡 ∈ 𝑆)𝑠 ⪯ 𝑡 ∧ 𝑡 ⪯ 𝑠 → 𝑠 = 𝑡
• 傳遞性： (∀𝑠, 𝑡, 𝑢 ∈ 𝑆)𝑠 ⪯ 𝑡 ∧ 𝑡 ⪯ 𝑢 → 𝑠 ⪯ 𝑢

則 ⪯ 名曰偏序關係．偏序關係之最小者、唯恆等關係也．不難證明之．

(1) id 適自反性、反對稱性、傳遞性、故爲偏序關係也．

(2) 凡 (∀𝑠 ∈ 𝑆) id ∖ {(𝑠, 𝑠)} 之關係皆以違自反性而非偏序關係也．故最小也

(3) 凡偏序關係必含 id 也．可以歸謬法示其唯一也．

若夫偏序之匪等者、謂之固偏序．記 ≺．𝑎 ≺ 𝑏 ≔ 𝑎 ⪯ 𝑏 ∧ 𝑎 ≠ 𝑏．

若改偏序 ⪯ 之自反性爲完全性 (∀𝑠, 𝑡 ∈ 𝑆)𝑠 ⪯ 𝑡 ∨ 𝑡 ⪯ 𝑠、則謂曰全序關係、又鎖．凡
全序之關係、恆偏序也．請備述之．全序關係適反對稱性與傳遞性、並以完全性蘊含自反

性即知其亦偏序也．

(𝑇 , ⪯) 偏序之構也．𝑠 ∈ 𝑇、若夫
• ∀𝑡 ∈ 𝑇 , 𝑠 ⊀ 𝑡、莫大於 𝑠．𝑠 謂之極大．
• ∀𝑡 ∈ 𝑇 , 𝑡 ⊀ 𝑠、莫小於 𝑠．𝑠 謂之極小．
• ∀𝑡 ∈ 𝑇 , 𝑡 ⪯ 𝑠、皆小於 𝑠．𝑠 謂之最大、記 max 𝑇 = 𝑠．
• ∀𝑡 ∈ 𝑇 , 𝑠 ⪯ 𝑡、皆大於 𝑠．𝑠 謂之最小、記 min 𝑇 = 𝑠．

最大（小）者極大（小）也．

偏序集之非空有窮者．

• 極大（小）元常有．

• 最大（小）元不常有．若 𝑇 = {♣︎, ♦︎, ♥︎}、偏序關係 ⪯ = id．♣︎ 孰與 ♦︎ ？所以無最大

（小）元者、不可比而已．

全序集之非空有窮者、常有最大（小）元．請擬以歸納示之

證 .（非空有窮全序集 𝑆 有最大元）

(1) |𝑆| = 1、𝑆 之元唯一、即最大最小元也．

(2) |𝑆| = 2、設 𝑆 = {𝑡1, 𝑡2}、其最元得計算如下

max 𝑆 = {𝑡1 if 𝑡2 ⪯ 𝑡1
𝑡2 if 𝑡1 ⪯ 𝑡2

(3) 設 |𝑆| = 𝑁、𝑆 有最大元．察 |𝑆| = 𝑁 + 1、令 𝑆′ = 𝑆 ∖ {𝑠}． 由前款知 𝑆′ 有最大元 

𝑀 ′ ．然則 max 𝑆 = max{𝑀 ′, 𝑠}、𝑆 之最大元也． ∎

集之界、不逾之境也．凡集 𝑆 ⊆ 𝑇  之元 𝑠、其或 𝑠 ≤ 𝑀  者、則謂 𝑀  爲 𝑆 一上界．反之、

若 𝑀 ≤ 𝑠 則曰下界．上下界並存、則謂之有界．界不必含於集也．上界之最小者、曰上確
界、或曰最小上界、記 sup 𝑆．下界之最大者、曰下確界、或曰最大下界、記 inf 𝑆．
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sup 𝑆 = min{𝑡 ∈ 𝑇 | 𝑠 ∈ 𝑆, 𝑠 ≤ 𝑡}

inf 𝑆 = max{𝑡 ∈ 𝑇 | 𝑠 ∈ 𝑆, 𝑡 ≤ 𝑠}

若夫上界與上確界、察其性質、凡有二項、一曰 sup 𝑆 爲 𝑆 之上界、二曰凡其上界莫小於 

sup 𝑆、最小之上界也． 請問偏序集恆有上界乎？ 1．較然可見有窮集恆有界、且 sup 𝑆 =
max 𝑆 而 inf 𝑆 = min 𝑆 也．依序遍歷 𝑆 之元．

命題 9 設 (𝑋, ⪯) 爲全序集．下列三命題相若也．
(1) 凡 𝑋 之非空子集有上界者有上確界

(2) 凡 𝑋 之非空子集有下界者有下確界

(3) 𝐴、𝐵 皆 𝑋 之非空子集也． 凡 𝐴 中之 𝑎 與 𝐵 中之 𝑏 使 𝑎 ⪯ 𝑏 者．𝑋 中必有一

元 𝑐 間於 𝑎、𝑏、即 ∃𝑐 ∈ 𝑋, 𝑎 ⪯ 𝑐 ⪯ 𝑏

證 . 將以 (1) ⇒ (2) ⇒ (3) ⇒ (1) 次第證之．

(1 ⇒ 2)：使 𝐴 爲 𝑋 之非空子集、有下界．集 𝐴 之下界以爲 𝐵 ≔ {𝑏 ∈ 𝑋 | 𝑏 ⪯ 𝑎, ∀𝑎 ∈
𝐴} 以 𝐴 有下界知 𝐵 之不空也．凡 𝑎 ∈ 𝐴 皆爲 𝐵 上界也．故 𝐵 有上確界也． 假 𝑚 ≔
sup 𝐵, 而 𝑚 ⪯ 𝑎 也（以上確界爲最小上界故耳）． 故知、𝑚 ∈ 𝐵 而 𝑚 = max 𝐵．𝐴 下

界之最大者也．𝑚 = inf 𝐴．

(2 ⇒ 3)：設 𝐴,𝐵 皆 𝑋 之非空子集也．∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 ⪯ 𝑏 也．故知 𝐴 之元俱爲 

𝐵 之下界也．由 (2) 知 𝐵 有下確界、設以爲 𝑐 ≔ inf 𝐵、則 𝑎 ⪯ 𝑐 ⪯ 𝑏、即所求也．

(3 ⇒ 1)： ∎

1.3 映

𝑋、𝑌  皆設以爲集也．夫偏映者、𝑋 × 𝑌  上之二元關係 𝑓 之

(𝑥, 𝑦) ∈ 𝑓 ∧ (𝑥, 𝑦′) ∈ 𝑓 → 𝑦 = 𝑦′

者也．若夫定義域及像域之所謂、悉承自二元關係也．若復 dom 𝑓 = 𝑋2)、則曰全映、簡

稱映．記 𝑓 : 𝑋 → 𝑌、𝑌  曰終域．若 (𝑥, 𝑦) ∈ 𝑓、記曰 𝑓(𝑥) = 𝑦 或 𝑓 : 𝑥 ↦ 𝑦．若 𝑌  爲一

數集、則 𝑓 謂之函數．

例 4（映射例）

• {(𝑥, 𝑦) ∈ 𝗥2
>0 | 𝑦2 = 𝑥}．𝑦 =

√
𝑥 之上半支也．

• 𝑋 上之恆等關係 id𝑋、由其所謂、id𝑋 = {(𝑥, 𝑥) | 𝑥 ∈ 𝑋}、 於是 (𝑥, 𝑦) ∈ id𝑋 →
𝑥 = 𝑦 且 (𝑥, 𝑦′) ∈ id𝑋 → 𝑥 = 𝑦′ 而 𝑦 = 𝑥 = 𝑦′ 矣．乃知其偏映．又 dom id𝑋 = 𝑋、
故知 id𝑋 爲映．遂稱 id𝑋 : 𝑋 ∋ 𝑥 ↦ 𝑥 ∈ 𝑋 恆等映射．

悉集 𝑋 到 𝑌  之函數于 𝑌 𝑋 ≔ {𝑓 | 𝑓 : 𝑋 → 𝑌 }．

2) 即 𝑋 ⊆ dom 𝑓
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1.3.1 限制

𝑓 : 𝑋 → 𝑌  爲映也、𝑆 ⊆ 𝑋、集合

𝑓[𝑆] ≔ {𝑓(𝑠) | 𝑠 ∈ 𝑆}

名曰 𝑓 於 𝑆 之像集．

命題 10 𝑓[𝑆] ⊆ 𝑓[𝑋] = i𝑓

證 . 一者較然可見．二者欲所證、 𝑓[𝑋] ⊆ i𝑓 及 𝑓[𝑋] ⊇ i𝑓 而已．其 i𝑓 = {𝑦 ∈ 𝑌 | (∃𝑥 ∈
𝑋)𝑓(𝑥) = 𝑦} 承義自二元關係．

(⊆) ∀𝑦 ∈ 𝑓[𝑋] = {𝑓(𝑥) | 𝑥 ∈ 𝑋} 有 𝑥 ∈ 𝑋 遂使 𝑦 = 𝑓(𝑥) ∈ 𝑌．故 𝑦 ∈ i𝑓．
(⊇) ∀𝑦 ∈ i𝑓 有 𝑥 ∈ 𝑋 遂使 𝑦 = 𝑓(𝑥)．是以 𝑦 ∈ 𝑓[𝑋]． ∎

定義函數 𝑓 於 𝑆 之限制 𝑓|𝑆 : 𝑆 → 𝑌、𝑓|𝑆(𝑠) ≔ 𝑓(𝑠)．於是 i𝑓|𝑆 = 𝑓[𝑆]．

1.3.2 單滿性

𝑓 : 𝑋 → 𝑌  映也．夫單映者、

𝑓(𝑥) = 𝑓(𝑥′) → 𝑥 = 𝑥′.

蓋 𝑓 之元不同而像相違也．記 𝑓 : 𝑋 ↣ 𝑌．

夫滿映者、

∀𝑦 ∈ 𝑌 , ∃𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑦

蓋 𝑌  之元悉 𝑓 之像也．記 𝑓 : 𝑋 ↠ 𝑌．

夫對映者、單映且滿映．記 𝑓 : 𝑋 ⤖ 𝑌

命題 11 (𝑓 : 𝑋 ↠ 𝑌 ) ↔ (i𝑓 = 𝑌 )

證 . (→) 使 𝑓 滿映．欲證明 i𝑓 = 𝑌、則以 i𝑓 ⊆ 𝑌 ∧ 𝑌 ⊆ i𝑓 其證也．前者較然．及後者、

以 𝑓 滿映、∀𝑦 ∈ 𝑌 , ∃𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑏．是以 𝑦 ∈ i𝑓 = {𝑓(𝑥) | 𝑥 ∈ 𝑋}．

(←) 使 i𝑓 = 𝑌、 欲證 𝑓 滿映、則須證 ∀𝑦 ∈ 𝑌 , ∃𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑏 而已．蓋 i𝑓 = 𝑌、
則 ∀𝑦 ∈ 𝑌 , 𝑦 ∈ i𝑓．是以 ∀𝑦 ∈ 𝑌 , ∃𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑏． ∎

是故、函數之單映否、滿映否、對映否、須復論及定義域與終域．如函數 𝑓 : 𝑥 ↦ 𝑥2 之於

下列各集合中單映滿映固不同也．

𝑥 ↦ 𝑥2 單 滿

𝗥 → 𝗥
𝗥 → 𝗥≥0 ○

𝗥≥0 → 𝗥≥0 ○ ○
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例 5（單映與滿映）

恆等函數 id𝑋 對映也．

以 ∀𝑥, 𝑥′ ∈ 𝑋, 𝑥 = id𝑋(𝑥) = id𝑋(𝑥′) = 𝑥′ 且 i id𝑋 = 𝑋 故也．

1.3.3 複合與逆

映射者素二元關係也．映射之複合不亦映射乎？

命題 12（複合映射）𝑓 ∈ 𝑌 𝑋, 𝑔 ∈ 𝑍𝑌  則其複合關係 𝑔 ∘ 𝑓 ∈ 𝑍𝑋．

證 . 使 (𝑥, 𝑧) ∈ 𝑔 ∘ 𝑓、由複合關係之所謂、知 ∃𝑦 ∈ 𝑌  使 (𝑥, 𝑦) ∈ 𝑓 ∧ (𝑦, 𝑧) ∈ 𝑔． 復使 

(𝑥, 𝑧′) ∈ 𝑔 ∘ 𝑓、知 ∃𝑦′ ∈ 𝑌  使 (𝑥, 𝑦′) ∈ 𝑓 ∧ (𝑦′, 𝑧′) ∈ 𝑔． 以 𝑓 映射而知 𝑦 = 𝑦′．以 𝑔 映射

而知 𝑧 = 𝑧′．

(𝑥, 𝑧) ∈ 𝑔 ∘ 𝑓 ∧ (𝑥, 𝑧′) ∈ 𝑔 ∘ 𝑓 → 𝑧 = 𝑧′

乃知 𝑔 ∘ 𝑓 偏映．然後證及 dom(𝑔 ∘ 𝑓) = 𝑋．

𝑓 ∈ 𝑌 𝑋 故 dom 𝑓 = 𝑋．∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑌 , (𝑥, 𝑦) ∈ 𝑓．又以 𝑔 ∈ 𝑍𝑌  故 dom 𝑔 = 𝑌．
∃𝑧 ∈ 𝑍, (𝑦, 𝑧) ∈ 𝑔． 於是 (𝑥, 𝑧) ∈ 𝑔 ∘ 𝑓．

∀𝑥 ∈ 𝑋, ∃𝑧 ∈ 𝑍, (𝑥, 𝑧) ∈ 𝑔 ∘ 𝑓

乃知 dom(𝑔 ∘ 𝑓) = 𝑋． ∎

蓋此其映射之複合關係所以映射矣．可以複合關係之結合律知複合映射之結合．

命題 13 單（滿）映之複合亦單（滿）映也．

證 . 設 𝑓 : 𝑋 → 𝑌、𝑔 : 𝑌 → 𝑍．
• 單映：設 𝑥, 𝑥′ ∈ 𝑋、若 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑥′))、則以 𝑔 單映知 𝑓(𝑥) = 𝑓(𝑥′)．以 𝑓 單映知 

𝑥 = 𝑥′．

• 滿映：設 𝑧 ∈ 𝑍．以 𝑔 滿映知 ∃𝑦 ∈ 𝑌 , 𝑔(𝑦) = 𝑧．以 𝑓 滿映知 ∃𝑥 ∈ 𝑋, 𝑓(𝑥) = 𝑦．是以 

𝑔(𝑓(𝑥)) = 𝑧． ∎

復知對映之複合亦對映也．

映射之複合映射也．至於映射之逆關係則不然．若映射 𝑓 : 𝑋 → 𝑌  其逆關係 𝑓−1 成

映則曰 𝑓 可逆．然則 𝑓−1 其名曰 𝑓 之逆映．

命題 14 𝑓−1 ∘ 𝑓−1 = 𝑓

命題 15 映 𝑓 : 𝑋 → 𝑌  可逆 ↔ 𝑓 爲對映．

證 . (←) 使 𝑓 單映、即 𝑦 = 𝑓(𝑥) = 𝑓(𝑥′) 則 𝑥 = 𝑥′．思惟其逆關係 𝑓−1 ⊆ 𝑌 × 𝑋、則
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(𝑦, 𝑥) ∈ 𝑓−1 ∧ (𝑦, 𝑥′) ∈ 𝑓−1 → 𝑥 = 𝑥′

乃知 𝑓−1 偏映．使 𝑓 滿映則由命題 11 知 𝑌 = i𝑓 = dom 𝑓−1．𝑓 對映則 𝑓−1 映也．

(→) 使 𝑓 可逆．然則 𝑓−1 成映、∀𝑥, 𝑥′ ∈ 𝑋, ∀𝑦 ∈ 𝑌、(𝑦, 𝑥) ∈ 𝑓−1 ∧ (𝑦, 𝑥′) ∈ 𝑓−1 →
𝑥 = 𝑥′ 以逆關係之所謂、

𝑓(𝑥) = 𝑦 = 𝑓(𝑥′) → 𝑥 = 𝑥′

乃知 𝑓 單映也．𝑌 = dom 𝑓−1 = i𝑓．故知 𝑓 滿映． ∎

命題 16 映 𝑔 : 𝑌 → 𝑋 使 𝑔 ∘ 𝑓 = id𝑋 者、謂之 𝑓 之左逆映．使 𝑓 ∘ 𝑔 = id𝑌  者、謂

之 𝑓 之右逆映．然則 𝑓 可逆 ↔ 𝑓−1 左逆且右逆．

證 . 設 𝑦 = 𝑓(𝑥) 即 (𝑥, 𝑦) ∈ 𝑓、有 (𝑦, 𝑥) ∈ 𝑓−1、即 𝑥 = 𝑓−1(𝑦)．
• 先證 𝑓−1 左逆．即 𝑥 = 𝑓−1(𝑦) = 𝑓−1(𝑓(𝑥))．
• 次證 𝑓−1 右逆．即 𝑦 = 𝑓(𝑥) = 𝑓(𝑓−1(𝑦)) ∎

命題 17 𝑓 有左逆映則 𝑓 單映也．

證 . 設 𝑔 : 𝑌 → 𝑋 爲 𝑓 之左逆映也．欲證 𝑓 單映、證以 𝑓(𝑥) = 𝑓(𝑥′) → 𝑥 = 𝑥′． 𝑓(𝑥) =
𝑓(𝑥′) 然則 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑥′))．以 𝑔 爲 𝑓 之左逆映知 𝑥 = 𝑥′． ∎

1.4 指標與泛直積

設 𝒜︀ 爲非空集族．𝑓 : 𝐼 ↠ 𝒜︀ 滿映也．然則謂 𝑓 爲 𝒜︀ 之指標映而 𝐼 爲指標集．(𝒜︀, 𝑓) 謂
之指標族．蓋以指標集之元標記集族之元素．凡指標 𝑖 ∈ 𝐼 , 記其所指 𝑓(𝑖) ∈ 𝒜︀ 爲 𝐴𝑖．則

以 𝑓 滿映、𝒜︀ = {𝐴𝑖 | 𝑖 ∈ 𝐼}．並可記 𝒜︀ = {𝐴𝑖}𝑖∈𝐼．指標類上之泛並與泛交謂之以

⋃
𝑖∈𝐼

𝐴𝑖 ≔ {𝑥 | ∃𝑖 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖}

⋂
𝑖∈𝐼

𝐴𝑖 ≔ {𝑥 | ∀𝑖 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖}

又若 𝐼 = {1, …, 𝑛} 則可記泛並爲 ⋃𝑛
𝑖=1、或 ⋂1≤𝑖≤𝑛．泛交亦相類也．

命題 18

(1) ⋃
𝑖∈𝐼

𝐴𝑖 = ⋃ 𝒜︀

(2) ⋂
𝑖∈𝐼

𝐴𝑖 = ⋂ 𝒜︀

證 .

(1) ∀𝑥 ∈ ⋃ 𝒜︀, ∃𝐴 ∈ 𝒜︀ 遂使 𝑥 ∈ 𝐴．以 𝑓 滿映、∃𝑖 ∈ 𝐼, 𝐴 = 𝑓(𝑖) = 𝐴𝑖、使 𝑥 ∈ 𝐴𝑖、遂 𝑥 ∈
⋃𝑖∈𝐼 𝐴𝑖．反之、∀𝑥 ∈ ⋃𝑖∈𝐼 𝐴𝑖、則 ∃𝑖 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖 ∈ 𝒜︀． 於是 𝑥 ∈ ⋃ 𝒜︀．
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(2) 盖相似． ∎

𝑋 集合也、查映 𝑓 : 𝗡∗
≤𝑚 → 𝐴．例 𝑋 = {♣︎, ♦︎, ♥︎, ♠︎}、𝑚 = 2、則 𝑓(1) = ♥︎, 𝑓(2) = ♦︎、

𝑓 擇取 𝑋 之二元也．夫 𝑓 自變量不必爲自然數．設指標類 𝒜︀ = {𝐴𝑖}𝑖∈𝐼、於是所謂泛直

積者

∏
𝑖∈𝐼

𝐴𝑖 ≔ {𝑓 映也 | ∀𝑖 ∈ 𝐼, 𝑓(𝑖) ∈ 𝐴𝑖}

凡指標 𝑖 ∈ 𝐼 者、𝑓 之函數 𝜋𝑖(𝑓) ≔ 𝑓(𝑖)、𝜋𝑖 : ∏𝑖∈𝐼 𝐴𝑖 → 𝐴𝑖 謂之第 𝑖 影映．

例 6

Date Picker 者、圖形控件所以擇年月日也．設指標集  𝐼 = {年,月,日}、指標
族 𝒜︀ = {𝐴𝑖}𝑖∈𝐼、其中 𝐴年 = {1970, …, 2026}、𝐴月 = {一月,二月, …,十二月}、𝐴日 =
{1, 2, …, 31}．

▶

2025

2026

1970

1971

1972

十一月

十二月

一月

二月

三月

30

31

01

02

03

◀

圖表 1 日期擇者

是以泛直積 ∏𝑖∈𝐼 𝐴𝑖 之元 𝑓 即爲所擇日期．𝜋年(𝑓) 所擇之年、𝜋月(𝑓) 所擇之月、𝜋日(𝑓) 
所擇之日也．

注意 ∏𝑛
𝑖=1 𝐴𝑖 相違於 𝐴1 × ⋯ × 𝐴𝑛．前者指標集上映之集合、後者 𝑛 元組之集合也． 若

比 𝑛 = 2、則泛直積 ∏2
𝑖=1 𝐴𝑖 之元素 𝑓 = {(1, 𝑎1), (2, 𝑎2)} 相違於 (𝑎1, 𝑎2) ∈ 𝐴1 × 𝐴2．然

其對偶而構同、相若關係不易故也．由是元組可示以離散映射．若夫元組之元皆數者、謂

之數組．

1.5 勢

孟子曰「權、然後知輕重；度、然後知長短．物皆然．」計集 𝑆 其元众寡曰勢、記以 |𝑆|． 

𝑆, 𝑇  集合也、欲比其勢、以映量之．有 𝑆 → 𝑇  之單映、則 𝑆 寡於 𝑇．曰 𝑆 勢弱於 𝑇、
或曰 𝑇  勢強於 𝑆、記 |𝑆| ≤ |𝑇 |． 若有對映 𝑆 → 𝑇、則曰二集等勢、記曰 |𝑆| = |𝑇 |．蓋
以 𝑆 度 𝑇  而無盈虛、則勢相若．|𝑆| ≤ |𝑇 | ∧ |𝑆| ≠ |𝑇 |、則記曰 |𝑆| < |𝑇 |．

多使自然数爲籌、比之多少、∃𝑛 ∈ 𝗡 可使 𝑆 對映于 𝗡<𝑛 ≔ {0, 1, 2, …, 𝑛 − 1}、然則
謂 𝑆 有窮、勢 𝑛、記 |𝑆| = 𝑛． 若有集 𝑆 = {♣︎, ♦︎, ♥︎, ♠︎}、計以一、二、三、四乃知其勢 

4．有對映

𝑓 : 𝑆 → 𝗡<4

♣︎ ↦ 0, ♦︎ ↦ 1, ♥︎ ↦ 2, ♠︎ ↦ 3

故也．是以有窮集者、必得以自然數指標其元．
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若夫莫能以自然數數者、謂之無窮集．如分數集、實數集等．|𝗡| 定爲 ℵ0．集合與自

然數集勢等者、謂曰可數、否則曰叵數．如分數集爲可數集、實數集爲叵數集．有窮集之

勢自然數、且 |∅| = 0．無窮集者、雖不可勝數、猶可較也．集可使其元對映於自然數者、
若盡數自然數之勢然．

例 7（自然數之等勢）

以下集合可數無窮:

• 【𝗡∗ —— 正自然數】

易可驗證 𝑓 : 𝗡 → 𝗡∗, 𝑛 ↦ 𝑛 + 1 對映、故 |𝗡∗| = ℵ0．

• 【𝗡𝑛 —— 自然數組】

Cantor 折線法．列 𝗡2 所有爲無窮矩陣、後沿折線以自然數編號、得對映 𝗡 →
𝗡2 也．

(0, 0)

(0, 1)

(0, 2)

(0, 3)

⋯

⋮

(1, 0)

(1, 1)

(1, 2)

(1, 3)

⋯

⋮

(2, 0)

(2, 1)

(2, 2)

(2, 3)

⋯

⋮

(3, 0)

(3, 1)

(3, 2)

(3, 3) ⋯

⋮ ⋱

于是凡自然數 𝑛、𝗡𝑛 皆可數也．若 (𝑎, 𝑏, 𝑐) ∈ 𝗡3、對應 (𝑎, (𝑏, 𝑐)) ∈ 𝗡 × 𝗡2 

也．以此類推．

• 【2𝗡 —— 偶數】

𝑓(𝑛) = 2𝑛 者 𝗡 → 2𝗡 之對映也．奇數亦然．進一步 𝗡/𝑛𝗡3) 之任意非空子集

可數無窮也．

• 【𝗭 —— 整數】

整數集也．設 𝑓 : 𝗭 → 𝗡

𝑓(𝑛) = {−2𝑛 − 1 若 𝑛 < 0
2𝑛 若 𝑛 ≥ 0

是映正數悉於偶數而負數悉映於奇數也．

• 【𝗤 —— 分數】

分數集也．依其所謂、𝗤 = {𝑝/𝑞 | 𝑝, 𝑞 ∈ 𝗭, 𝑞 ≠ 0}． 故而可列下表．

3) 此商群也
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−3/1

−3/2

−3/3

−3/4

⋮

−2/1

−2/2

−2/3

−2/4

⋮

−1/1

−1/2

−1/3

−1/4

⋮

0/1

0/2

0/3

0/4

⋮

1/1

1/2

1/3

1/4

⋮

2/1

2/2

2/3

2/4

⋮

3/1

3/2

3/3

3/4

⋮

⋯⋯

⋯⋯

⋯⋯

⋯⋯

⋱⋰

由徑、凡真分數悉見舉也．

命題 19

(1) ℵ𝑛
0 = ℵ0

(2) ℵ0 ⋅ 2ℵ0 = 2ℵ0

(3) (2ℵ0)ℵ0 = 2ℵ0

命題 20（Schroder-Bernstein 定理）𝑆、𝑇  集也．

|𝑆| ≤ |𝑇 | ∧ |𝑇 | ≤ |𝑆| → |𝑆| = |𝑇 |

證 . 設 𝑓 : 𝑆 → 𝑇  與 𝑔 : 𝑇 → 𝑆 皆單映也．欲證 |𝑆| = |𝑇 |、以對映 ℎ : 𝑆 → 𝑇  之有、此

則其證也． 設

𝑆𝑛 ≔ {𝑆 ∖ 𝑔[𝑇 ] 若 𝑛 = 0
𝑔 ∘ 𝑓[𝑆𝑛−1] 若 𝑛 > 0

𝑆0 之元莫有 𝑔 之像也．而 𝑆1, 𝑆2, … 之屬、俱可緣溯至 𝑆0．故集 𝑆 之元之源自 𝑆 者設以

爲 𝒮︀𝑆 ≔ ⋃𝑛∈𝗡 𝑆𝑛．設 𝒯︀𝑆 ≔ 𝑓[𝒮︀𝑆]、𝑇  之元之源自 𝑆 者也．𝒮︀𝑆,𝒮︀𝑇  不相交．蓋 𝑠 ∈ 𝒮︀𝑆 源

自 𝑆 而非 𝑇  故也．

設

ℎ : 𝑆 → 𝑇 = {𝑓 若 𝑠 ∈ 𝒮︀𝑆
𝑔−1 若 𝑠 ∈ 𝑆 ∖ 𝒮︀𝑆

則 ℎ 對映也．何故？

• 𝑓 單映而 𝑓|𝒮︀𝑆
 自然．反之、𝑓|𝒮︀𝑆

: 𝒮︀𝑆 → 𝒯︀𝑆 滿映也．以 𝒯︀𝑆 = 𝑓[𝒮︀𝑆] = i𝑓|𝒮︀𝑆
 較然可知．

於是 𝑓|𝒮︀𝑆
 對映也．

• 同理以知 𝑔|𝑇∖𝒯︀𝑇
 單映．而
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𝑔[𝑇 ∖ 𝒯︀𝑆] = 𝑆 ∖ 𝒮︀𝑆

然則可以命題 11知 𝑔|𝑇∖𝒯︀𝑇
: 𝑇 ∖ 𝒯︀𝑇 → 𝑆 ∖ 𝒮︀𝑆 滿映也．所以然者、蓋

‣ 凡 𝑠 ∈ 𝑆 ∖ 𝒮︀𝑆 者、𝑠 ∉ 𝑆0．是以 𝑠 ∈ 𝑔[𝑇 ] → (∃𝑡 ∈ 𝑇 )𝑔(𝑡) = 𝑠．須證 𝑡 ∉ 𝒯︀𝑆 而已．若 

𝑡 ∈ 𝒯︀𝑆、則 (∃𝑠′ ∈ 𝒮︀𝑆)𝑓(𝑠′) = 𝑡．則 𝑠 = 𝑔(𝑡) = 𝑔(𝑓(𝑠′)) 即 (∃𝑛 ∈ 𝗡+)𝑠 ∈ 𝑆𝑛 ⊆ 𝒮︀𝑆．謬

也．故 𝑡 ∉ 𝒯︀𝑆 → 𝑡 ∈ 𝑇 ∖ 𝒯︀𝑆 → 𝑠 = 𝑔(𝑡) ∈ 𝑔[𝑇 ∖ 𝒯︀𝑆]．

‣ 反之、凡 𝑠 ∈ 𝑔[𝑇 ∖ 𝒯︀𝑆] 者、∃𝑡 ∈ 𝑇 ∖ 𝒯︀𝑆, 𝑔(𝑡) = 𝑠．須證 𝑠 ∉ 𝒮︀𝑆 而已．若 𝑠 ∈ 𝒮︀𝑆、則 

(∃𝑛 ∈ 𝗡+)𝑠 ∈ 𝑆𝑛．繼而 (∃𝑠′ ∈ 𝒮︀𝑆)𝑔(𝑓(𝑠′)) = 𝑠、因 𝑔 單映、𝑡 = 𝑓(𝑠′) ∈ 𝒯︀𝑆．謬也．

故 𝑠 ∈ 𝑆 ∖ 𝒮︀𝑆．

是以 ℎ 對映也． ∎

命題 21（鴿籠原理）設 𝑆、𝑇  集也．|𝑆| > |𝑇 |、則無單映 𝑆 ↣ 𝑇．

證 . 歸謬法．使 𝑆 ↣ 𝑇．則 |𝑆| ≤ |𝑇 |．謬也． ∎

命題 22（Cantor’s 定理）𝑆 集也．

|𝑆| < |𝒫︀(𝑆)|

證 . 𝑆 ∋ 𝑥 ↦ {𝑥} ∈ 𝒫︀(𝑆) 單射．故知 |𝑆| ≤ |𝒫︀(𝑆)|．|𝑆| ≠ |𝒫︀(𝑆)| 然則證遂．否則 𝑓 : 𝑆 ↣
𝒫︀(𝑆) 或滿也．

𝑇 ≔ {𝑠 ∈ 𝑆 | 𝑠 ∉ 𝑓(𝑠)} ∈ 𝒫︀(𝑆)

欲證 𝑇  不在 i𝑓 之中、而 𝑓 非對映也．不然、使 ∃𝑡 ∈ 𝑆, 𝑓(𝑡) = 𝑇．則
(1) 𝑡 ∈ 𝑇、則 𝑡 ∉ 𝑓(𝑡) = 𝑇．謬也．
(2) 𝑡 ∉ 𝑇、則 𝑡 ∈ 𝑓(𝑡) = 𝑇．謬也． ∎

可數集 𝑆 之冪集 𝒫︀(𝑆) 尤勢 2|𝑆| 也、請以歸納法示之: |𝒫︀(∅)| = |{∅}| = 1 ．使 |𝒫︀(𝑆)| =
2|𝑆|． 若添新元 𝑥 於 𝑆 以爲 𝑆′ = 𝑆 ∪ {𝑥}．其冪集 𝒫︀(𝑆′) 猶守 𝒫︀(𝑆) 之固有．𝒫︀(𝑆′) 之
新增者 {𝑥} 併於 𝒫︀(𝑆) 之固有也．

𝒫︀(𝑆 ∪ {𝑥}) = 𝒫︀(𝑆) ⊔ {𝑌 ∪ {𝑥} | 𝑌 ∈ 𝒫︀(𝑆)}.

是以

2|𝑆∪{𝑥}| = |𝒫︀(𝑆 ∪ {𝑥})|

= |𝒫︀(𝑆)| + |{𝑌 ∪ {𝑥} : 𝑌 ∈ 𝒫︀(𝑆)}|

= 2|𝑆| + 2|𝑆| = 2|𝑆|+1.

是其證也．
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2 論數集

本章議數集之建構及諸性質．數集者、蓋數之集合也．數集之有、始於自然數．自然數之

有、始於人數物之需．人數物以計其數、故有自然數也．自然數者、其性自然．人之所創

者、記號而已矣．今之數學需以形式論理之、故欲明自然數之義、必議以公理．

數學之發展、非獨賴自然數也．蓋自然數之有、猶樹之有根本也．樹之有枝葉、賴根

本而生也．數學之有他數集、賴自然數而立也．故分析學之始、必自自然數論也．

2.1 論自然數

公理 1（Peano 算數公理系統）算數語言 ℒ︀AR = {0, 𝑆, =}, 0 常符也、曰「零」．𝑆 一

元函數符也、曰後繼．= 等價關係也、曰「相等」．𝑥, 𝑦, … 變元也．並以公理

• (PA1) ∀𝑥, 𝑆(𝑥) ≠ 0； 0 非後繼也

• (PA2) ∀𝑥, ∀𝑦, (𝑆(𝑥) = 𝑆(𝑦) → 𝑥 = 𝑦)； 後繼相等則原數相等

• (PA3) 𝜑(0) ∧ ∀𝑥(𝜑(𝑥) → 𝜑(𝑆(𝑥))) → ∀𝑥𝜑(𝑥) 一階歸納法模式

‣ (PA3*) ∀𝜑[𝜑(0) ∧ ∀𝑥(𝜑(𝑥) → 𝜑(𝑆(𝑥))) → ∀𝑥𝜑(𝑥)] 二階歸納法原理

(PA1) ~ (PA3) 曰一階 Peano 公理． 將 (PA3) 換為 (PA3*) 則曰二階 Peano 公理．後文

所述皆用二階． 至此、算數之構造初成矣．然加法、乘之義猶未立也．ℒ︀AR 外、加號 +, 

乘號 ×, 小於號 ≤ 之義也、以中綴記遞歸立之如下：

定義 1（加法）

(1) 𝑥 + 0 ≔ 𝑥; 加零得其數也

(2) 𝑥 + 𝑆(𝑦) ≔ 𝑆(𝑥 + 𝑦); 加後繼得和之後繼也

註：為了體現還原論的精神、我們這裡採用了 5 公理版本的基本 PA 公理系統、+, × 不

在 ℒ︀AR 中．因此不能固然保證對於任何 𝑥 + 𝑦 皆「有定義」、即表示 ℒ︀AR 中一項 (term)．

此實良義也．蓋凡 𝑥、可證加法於 𝑦 皆有定義．設 𝑃(𝑦) ≔ 𝑥 + 𝑦 有定義、若 𝑦 = 0、則
依 (1) 知有定義也．若 𝑥 + 𝑦 有定義、則以 (2) 而 𝑥 + 𝑆(𝑦) 亦有定義．由 PA3 知全有定

義也．

有關乘法之公理:

• (PA8) ∀𝑥(𝑥 × 0 = 0); 乘零得零也

• (PA9) ∀𝑥, ∀𝑦(𝑥 × 𝑆(𝑦) = (𝑥 × 𝑦) + 𝑥); 乘後繼得

ℒ︀AR-結構之適二階 PA 公理系統者 𝔑 ⊧ PA2、標準模型也．其論域曰「自然数集」．但注

意滿足一階 PA 的结构不全是标准模型、比如下例

例 8（非標準模型）

…
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然則確有合 𝔑 結構之造耶？一例「歸納集」也．對任意集合 𝑥, 稱集合 𝑥 ∪ {𝑥} 爲 𝑥 的後

繼、記爲 𝑆(𝑥)．

命題 23（無窮公理）存在集合 𝑋、∅ ∈ 𝑋、並且 𝑋 中任意元素之後繼亦在其中．即

∃𝑋(∅ ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋, 𝑆(𝑥) ∈ 𝑋)

0 ≔ ∅

1 ≔ 𝑆(0) = {0} = {∅}

2 ≔ 𝑆(1) = {0, 1} = {∅, {∅}}

3 ≔ 𝑆(2) = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

⋮

定義如果一個集合 𝑋 滿足

∅ ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋, 𝑆(𝑥) ∈ 𝑋

則曰 𝑋 為歸納集．則無窮公理可謂：存在歸納集也．可見 0 = ∅ 存在於任何歸納集中

而 Dedekind (1888) 证明了所有二階 Peano 算數的模型都同構的．即同构意义上只

有一种自然数集．

察時針之刻、𝑁 ′ ≔ {�, 🕐, 🕑, 🕒, 🕓, 🕔, 🕕, 🕖, 🕗, 🕘, 🕙, 🕚}, 0′ ≔ �．𝑆 進一時刻也．然則 � = 𝑆🕚、
是以不適 𝑁0 而不適 PA 也．

又察下例、𝑁 ′ ≔ {♥︎, ♦︎, ♣︎, ♠︎}, 0′ ≔ ♥︎．設 𝑆 其義如下．♦︎ = 𝑆♥︎ = 𝑆♠︎ 違於 𝑁1 而

不適 PA 也．

𝑆 𝑆 𝑆

𝑆

♥︎ ♦︎ ♣︎ ♠︎

𝜈 滿射也．即 ∀𝑛 ∈ 𝗡∗, ∃𝑚 ∈ 𝗡, 𝑆𝑚 = 𝑛

證 . 設 𝑀 ≔ Im 𝜈 ∪ {0} = {𝑛 ∈ 𝗡∗ | ∃𝑛′ ∈ 𝗡, 𝑆𝑛′ = 𝑛} ∪ {0}．若 𝑚 ∈ 𝑀 ⊆ 𝗡, 𝑆𝑚 ∈
Im 𝜈 ⊆ 𝑀．由 𝑁1 知 𝑀 = 𝗡 = 𝗡∗ ∪ {0}．以 0 ∉ Im 𝜈, Im 𝜈 = 𝗡∗ 故 𝜈 滿射也． ∎

2.1.1 序

加法既立、則可定義自然數之序．

定義 2（序關係）凡自然數 𝑛, 𝑚、若有 𝑘 ∈ 𝗡 使 𝑛 = 𝑚 + 𝑘、則曰 𝑚 小於等於 𝑛、記 

𝑚 ≤ 𝑛．若 𝑘 ≠ 0、則曰 𝑚 小於 𝑛、記 𝑚 < 𝑛．

此序關係全序也、凡自然數皆可相較也．

證 . 此序關係為全序、須證四性：
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自反性 (𝑛 ≤ 𝑛)：

由加法定義、𝑛 = 𝑛 + 0．以 0 ∈ 𝗡、故 𝑛 ≤ 𝑛 恆真．

反對稱性 (𝑚 ≤ 𝑛 且 𝑛 ≤ 𝑚 ⇒ 𝑚 = 𝑛)：

若 𝑚 ≤ 𝑛、則有 𝑘1 ∈ 𝗡 使 𝑛 = 𝑚 + 𝑘1．

若 𝑛 ≤ 𝑚、則有 𝑘2 ∈ 𝗡 使 𝑚 = 𝑛 + 𝑘2．

代入得 𝑚 = (𝑚 + 𝑘1) + 𝑘2 = 𝑚 + (𝑘1 + 𝑘2)．此式意味 𝑘1 + 𝑘2 = 0．二自然數之和為零、
必二者皆零也、故 𝑘1 = 0．是以 𝑛 = 𝑚 + 0 = 𝑚．

傳遞性 (𝑙 ≤ 𝑚 且 𝑚 ≤ 𝑛 ⇒ 𝑙 ≤ 𝑛)：

若 𝑙 ≤ 𝑚、則有 𝑘1 使 𝑚 = 𝑙 + 𝑘1．

若 𝑚 ≤ 𝑛、則有 𝑘2 使 𝑛 = 𝑚 + 𝑘2．

代入得 𝑛 = (𝑙 + 𝑘1) + 𝑘2 = 𝑙 + (𝑘1 + 𝑘2)．令 𝑘3 = 𝑘1 + 𝑘2、則 𝑘3 ∈ 𝗡、故 𝑙 ≤ 𝑛．

完全性 (𝑚 ≤ 𝑛 或 𝑛 ≤ 𝑚)：

此可用歸納法證之．固定 𝑚 ∈ 𝗡、歸納于 𝑛．令命題 𝑃(𝑛) ≔ 𝑚 ≤ 𝑛 ∨ 𝑛 ≤ 𝑚．
• 基始：𝑛 = 0．
由加法定義、𝑚 = 0 + 𝑚．故 0 ≤ 𝑚 恆為真．是以 𝑃(0) 成立．

• 歸納：設 𝑃(𝑛) 為真、即 𝑚 ≤ 𝑛 或 𝑛 ≤ 𝑚．察 𝑃(𝑆(𝑛))．
‣ 若 𝑚 ≤ 𝑛、則有 𝑘 使 𝑛 = 𝑚 + 𝑘．故 𝑆(𝑛) = 𝑆(𝑚 + 𝑘) = 𝑚 + 𝑆(𝑘)．是以 𝑚 ≤ 𝑆(𝑛)．
此時 𝑃(𝑆(𝑛))

‣ 若 𝑛 ≤ 𝑚、則有 𝑘 使 𝑚 = 𝑛 + 𝑘．
– 若 𝑘 = 0、則 𝑚 = 𝑛．故 𝑆𝑛 = 𝑆𝑚 = 𝑚 + 𝑆0、則 𝑚 ≤ 𝑆(𝑛)．此時 𝑃(𝑆𝑛)．
– 若 𝑘 ≠ 0、則有 𝑘′ 使 𝑘 = 𝑆(𝑘′)．𝑚 = 𝑛 + 𝑆(𝑘′) = 𝑆(𝑛) + 𝑘′．是以 𝑆(𝑛) ≤ 𝑚．此
時 𝑃(𝑆(𝑛))．

綜上、凡 ⊢ 𝑃(𝑛) → 𝑃(𝑆(𝑛))． 由是、據歸納公理、完全性得證． ∎

2.1.2 記數法

然加法既成、尚需記數之法以表之．吾人所習用者、十進位制也．蓋以十為基、逢十進一．

所用數碼、印度-阿拉伯數字也、凡十、曰 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}．

定義 3（十進位表示法）凡自然數 𝑛 ∈ 𝗡、其十進位表示乃一字符串 𝑠𝑘𝑠𝑘−1…𝑠1𝑠0、其中 

𝑠𝑖 皆為數碼．此串之值、定義如下：

𝑛 = ∑
𝑘

𝑖=0
𝑠𝑖 × 10𝑖

其中 10 為 𝜈(9)．此式建立自然數與數碼串之對應．

此映射如何構造？可以遞歸為之． 凡 𝑛 ∈ 𝗡、其記數 𝑓(𝑛) 定義為：
• 若 𝑛 < 10、則 𝑓(𝑛) 為對應之數碼．如 𝑓(𝜈(0)) 為 “1”．

• 若 𝑛 ≥ 10、則以帶餘除法可得 𝑛 = 𝑞 × 10 + 𝑟、其中 0 ≤ 𝑟 < 10．則 𝑓(𝑛) 為 𝑓(𝑞) 與 

𝑓(𝑟) 之拼接．

19

https://uwni.blog/posts/set-theory/index.html
https://uwni.blog/posts/set-theory/index.html


U
w
n
i 
煢
鴉

 纂
於

 2
0
2
6
/
0
1
/
1
3
 1

2
:1

7
:1

2
 時
．
本
文

網
枼
．

若、欲求 123 之表示．

(1) 123 = 12 × 10 + 3
(2) 12 = 1 × 10 + 2
(3) 1 = 0 × 10 + 1

由是、𝑓(123) 為 𝑓(12) 拼接 𝑓(3)、即 𝑓(1) 拼接 𝑓(2) 再拼接 𝑓(3)、終得 “123”．

至此、抽象之自然數集方有吾人熟識之形態．

2.2 論整數

相等關係

𝑎 − 𝑏 = 𝑐 − 𝑑 ⇔ 𝑎 + 𝑑 = 𝑏 + 𝑐

凡自然數 𝑛、察對射於 𝗡 → {𝑛 − 0 | 𝑛 ∈ 𝗡} 上者 𝑛 ↦ 𝑛 − 0．知整數之形如 𝑛 − 0 者同

構於 𝗡 也．故可以整數 𝑛 記自然數 𝑛 − 0 而無虞也． 逆元

−𝑎 ≔ 0 − 𝑎

2.3 分數論

相等關係

𝑎//𝑏 = 𝑐//𝑑 ⇔ 𝑎𝑑 = 𝑏𝑐

必有

(∃𝑥//𝑦 ∈ [𝑎//𝑏]) gcd(𝑥, 𝑦) = 1

約式、或曰最簡分式、分式之子母互素者也．例如 1/1、2/3、5/8．以其子母皆最小、立
爲 𝗤/ = 之代表元也．稠性: 𝑎

2.4 實數論

請問、正方形之對角線長 𝑙 幾何? 以勾股定理知 𝑙2 = 2、擬其長以一分數之約式 𝑙 = 𝑝/𝑞

𝑙2 = 2 ⇔ 𝑝2 = 2𝑞2 ⇔ 2 ∣ 𝑝2 ⇔ 2 ∣ 𝑝

⇔ ∃𝑝′(𝑝 = 2𝑝′) ⇔ 2𝑝′2 = 𝑞2 ⇔ 2 ∣ 𝑞2 ⇔ 2 ∣ 𝑞

𝑝 與 𝑞 皆偶數、而 𝑝/𝑞 非約式也．故知 𝑙 非分數之屬也．以 Ἵππασος之初覺爲嚆矢、分數

之遺缺始昭於天下矣．此所以分數不可以度量也．

另察一例、有集分數其平方皆小於 2 者

𝗤<
√

2 ≔ {𝑥 ∈ 𝗤 | 𝑥2 < 2}

即知有上界也．而無上確界．擬以歸謬法證之： 設其上確界爲 ̅𝑥、則 ∀𝑥 ∈ 𝗤<
√

2, ̅𝑥 ≥ 𝑥、

∀𝜀 > 0, ∃𝑦 ∈ 𝗤<
√

2, ̅𝑥 − 𝜀 < 𝑦

由全序關係之三歧性知

(1) 若 ̅𝑥2 = 2: 證偽
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(2) 若 ̅𝑥2 > 2、需證明 ∃𝑦 ∈ 𝗤<
√

2, 𝑦 < ̅𝑥、設 𝑦 = ̅𝑥 − 𝜀、並使 𝑦2 > 2．即 𝑦 爲上界而甚

小耳．

( ̅𝑥 − 𝜀)2 ≥ 2 ⇔ ̅𝑥2 − 2 ̅𝑥𝜀 + 𝜀2 > 2 ⇐ ̅𝑥2 − 2 ̅𝑥𝜀 ≥ 2 ⇔ 𝜀 ≤ ̅𝑥2 − 2
2 ̅𝑥

不妨取 𝜀 = ( ̅𝑥2 − 2)/(2 ̅𝑥)、即爲證
(3) 若 ̅𝑥2 < 2、需證明 ∃𝑦 ∈ 𝗤<

√
2, 𝑦 > ̅𝑥、設 𝑦 = ̅𝑥 + 𝜀．即 ̅𝑥 乃非上界耳．

𝑦2 = ( ̅𝑥 + 𝜀)2 ≤ 2 ⇔ ̅𝑥2 + 2 ̅𝑥𝜀 + 𝜀2 < 2 ⇐ ̅𝑥2 + 2 ̅𝑥𝜀 ≤ 2 ⇔ 𝜀 ≤ 2 − ̅𝑥2

2 ̅𝑥

不妨取 𝜀 = (2 − ̅𝑥2)/(2 ̅𝑥)、即爲證

故知 𝗤<
√

2 上確界之不存也．

二例．

𝗤<2 ≔ {𝑥 ∈ 𝗤 | 𝑥2 < 4}

可知 𝑥 ≥ 2 皆上界也、而sup 𝗤<2 = 2也

凡 𝑄 爲 𝗤 上非空有上界子集、則定義為實數． 全序集 (𝑋, ⪯)．若其非空子集之有
上界者有上確界．曰序完備
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